Advertisement

Analytical Methods

  • Clark JohnsonEmail author
  • Brian Beard
  • Stefan Weyer
Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

Iron has four naturally occurring stable isotopes: 54Fe (5.85%), 56Fe (91.75%), 57Fe (2.12%) and 58Fe (0.28%) and its isotopic composition has been of interest since the invention of isotope ratio mass spectrometry. For example, Fe isotopes have been used to evaluate if extra-terrestrial Fe has the same isotope composition of terrestrial Fe (Valley and Anderson 1947), how Fe is cycled in the human body (Tang and Trassy 1986; Walczyk 1997), and the extent to which Fe is fractionated by geological processes (Beard and Johnson 1999; Bullen et al. 2001; Dixon et al. 1992). In this chapter, we discuss how Fe isotope analyses are conducted, with an emphasis on the methods used to ensure accurate Fe isotope analysis.

References

  1. Albarède F, Beard B (2004) Analytical methods for non-traditional isotopes. In: Johnson CM, Beard BL, Albarède F (eds) Geochemistry of non-traditional stable isotopes. Reviews in mineralogy & geochemistry, vol 55, pp 113–152.  https://doi.org/10.2138/gsrmg.55.1.113CrossRefGoogle Scholar
  2. Alder JF, Bombelka RM, Kirkbright GF (1980) Electronic excitation and ionization temperature-measurements in a high-frequency inductively coupled argon plasma source and the influence of water-vapor on plasma parameters. Spectrochim Acta Part B At Spectrosc 35(4):163–175.  https://doi.org/10.1016/0584-8547(80)80063-2CrossRefGoogle Scholar
  3. Anbar AD, Roe JE, Barling J, Nealson KH (2000) Nonbiological fractionation of iron isotopes. Science 288(5463):126–128.  https://doi.org/10.1126/science.288.5463.126CrossRefGoogle Scholar
  4. Andren H, Rodushkin I, Stenberg A, Malinovsky D, Baxter DC (2004) Sources of mass bias and isotope ratio variation in multicollector ICP-MS: optimization of instrumental parameters based on experimental observations. J Anal At Spectrom 19(9):1217–1224.  https://doi.org/10.1039/b403938fCrossRefGoogle Scholar
  5. Arnold GL, Weyer S, Anbar AD (2004) Fe isotope variations in natural materials measured using high mass resolution multiple collector ICPMS. Anal Chem 76(2):322–327.  https://doi.org/10.1021/ac034601vCrossRefGoogle Scholar
  6. Beard BL, Johnson CM (1999) High precision iron isotope measurements of terrestrial and lunar materials. Geochim Cosmochim Acta 63(11–12):1653–1660.  https://doi.org/10.1016/s0016-7037(99)00089-7CrossRefGoogle Scholar
  7. Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003a) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195(1–4):87–117.  https://doi.org/10.1016/s0009-2541(02)00390-xCrossRefGoogle Scholar
  8. Beard BL, Johnson CM, Von Damm KL, Poulson RL (2003b) Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 31(7):629–632.  https://doi.org/10.1130/0091-7613(2003)031<0629:Iicofc>2.0.Co;2CrossRefGoogle Scholar
  9. Beard BL, Johnson CM, Cox L, Sun H, Nealson KH, Aguilar C (1999) Iron isotope biosignatures. Science 285(5435):1889–1892CrossRefGoogle Scholar
  10. Belshaw NS, Zhu XK, Guo Y, O’Nions RK (2000) High precision measurement of iron isotopes by plasma source mass spectrometry. Int J Mass Spectrom 197:191–195.  https://doi.org/10.1016/s1387-3806(99)00245-6CrossRefGoogle Scholar
  11. Borrok DM, Wanty RB, Ridley WI, Wolf R, Lamothe PJ, Adams M (2007) Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement. Chem Geol 242(3–4):400–414.  https://doi.org/10.1016/j.chemgeo.2007.04.004CrossRefGoogle Scholar
  12. Browner RF, Long SE (1989) Comments on influence of water on ICP-reply. Spectrochim Acta Part B At Spectrosc 44(8):831–832.  https://doi.org/10.1016/0584-8547(89)80083-7CrossRefGoogle Scholar
  13. Bullen TD, White AF, Childs CW, Vivit DV, Schulz MS (2001) Demonstration of significant abiotic iron isotope fractionation in nature. Geology 29(8):699–702.  https://doi.org/10.1130/0091-7613(2001)029%3c0699:dosaii%3e2.0.co;2CrossRefGoogle Scholar
  14. Caughlin BL, Blades MW (1987) Effect of wet and dry nebulizer gas on the spatial-distribution of electron-density. Spectrochim Acta Part B At Spectrosc 42(1–2):353–360.  https://doi.org/10.1016/0584-8547(87)80076-9CrossRefGoogle Scholar
  15. Chen XY, Lapen TJ, Chafetz HS (2017) Accurate and precise silicon isotope analysis of sulfur- and iron-rich samples by MC-ICP-MS. Geostand Geoanal Res 41(3):427–435.  https://doi.org/10.1111/ggr.12158CrossRefGoogle Scholar
  16. Collinet M, Charlier B, Namur O, Oeser M, Medard E, Weyer S (2017) Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts. Geochim Cosmochim Acta 207:277–297.  https://doi.org/10.1016/j.gca.2017.03.029CrossRefGoogle Scholar
  17. Conway TM, Rosenberg AD, Adkins JF, John SG (2013) A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Anal Chim Acta 793:44–52.  https://doi.org/10.1016/j.aca.2013.07.025CrossRefGoogle Scholar
  18. Czaja AD, Johnson CM, Beard BL, Roden EE, Weiqiang L, Moorbath S (2013) Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet Sci Lett 363:192–203CrossRefGoogle Scholar
  19. d’Abzac FX, Beard BL, Czaja AD, Konishi H, Schauer JJ, Johnson CM (2013) Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates. Anal Chem 85(24):11885–11892.  https://doi.org/10.1021/ac402722tCrossRefGoogle Scholar
  20. d’Abzac FX, Czaja AD, Beard BL, Schauer JJ, Johnson CM (2014) Iron distribution in size-resolved aerosols generated by UV-femtosecond laser ablation: influence of cell geometry and implications for in situ isotopic determination by LA-MC-ICP-MS. Geostand Geoanal Res 38(3):293–309CrossRefGoogle Scholar
  21. d’Abzac FX, Seydoux-Guillaume AM, Chmeleff J, Datas L, Poitrasson F (2012) In situ characterization of infra red femtosecond laser ablation in geological samples. Part B: the laser induced particles. J Anal At Spectrom 27(1):108–119.  https://doi.org/10.1039/c1ja10154dCrossRefGoogle Scholar
  22. Dauphas N, Pourmand A, Teng FZ (2009) Routine isotopic analysis of iron by HR-MC-ICPMS: How precise and how accurate? Chem Geol 267(3–4):175–184.  https://doi.org/10.1016/j.chemgeo.2008.12.011CrossRefGoogle Scholar
  23. de Jong J, Schoemann V, Tison JL, Becquevort S, Masson F, Lannuzel D, Petit J, Chou L, Weis D, Mattielli N (2007) Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Anal Chim Acta 589(1):105–119.  https://doi.org/10.1016/j.aca.2007.02.055CrossRefGoogle Scholar
  24. Devulder V, Lobo L, Van Hoecke K, Degryse P, Vanhaecke F (2013) Common analyte internal standardization as a tool for correction for mass discrimination in multi-collector inductively coupled plasma-mass spectrometry. Spectrochim Acta Part B At Spectrosc 89:20–29.  https://doi.org/10.1016/j.sab.2013.08.009CrossRefGoogle Scholar
  25. Dixon PR, Janecky DR, Perrin RE, Rokop DJ, Unkefer PL, Spall WD, Maeck R (1992) Unconventional stable isotopes-iron. Water-rock interaction, vols 1 and 2: Vol 1: low temperature environments; vol 2: moderate and high temperate environmentsGoogle Scholar
  26. Dixon PR, Perrin RE, Rokop DJ, Maeck R, Janecky DR, Banar JP (1993) Measurement of iron isotopes (Fe-54, Fe-56, Fe-57, and Fe-58) in submicrogram quantities of iron. Anal Chem 65(15):2125–2130. 10.1021/ac00063a033
  27. Douglas DJ, Tanner SC (1998) Fundamental considerations in ICP-MS. In: Montaser A (ed) Inductively coupled plasma mass spectrometry. Wiley-VCH, New York, pp 615–679Google Scholar
  28. Finlayson VA, Konter JG, Ma L (2015) The importance of a Ni correction with ion counter in the double spike analysis of Fe isotope compositions using a Fe-57/Fe-58 double spike. Geochem Geophys Geosyst 16(12):4209–4222.  https://doi.org/10.1002/2015gc006012CrossRefGoogle Scholar
  29. Flory DR, Miller LV, Fennessey PV (1993) Development of techniques for the isolation of iron from biological=material for measuremnet of isotope ratios by fast-atom-bombardment MASS-SPECTROMETRY. Anal Chem 65(23):3501–3504. https://doi.org/10.1021/ac00071a029CrossRefGoogle Scholar
  30. Fritz JS (2004) Early milestones in the development of ion-exchange chromatography: a personal`account. J Chromatogr A 1039(1–2):3–12.  https://doi.org/10.1016/j.chroma.2003.12.068CrossRefGoogle Scholar
  31. Galic A, Mason PRD, Mogollon JM, Wolthers M, Vroon PZ, Whitehouse MJ (2017) Pyrite in a sulfate-poor Paleoarchean basin was derived predominantly from elemental sulfur: evidence from 3.2 Ga sediments in the Barberton Greenstone Belt, Kaapvaal Craton. Chem Geol 449:135–146. https://doi.og/10.1016/j.chemgeo.2016.12.006CrossRefGoogle Scholar
  32. Gillson GR, Douglas DJ, Fulford JE, Halligan KW, Tanner SD (1988) Nonspectroscopic interelement interferences in inductively coupled plasma mass-spectrometry. Anal Chem 60(14):1472–1474.  https://doi.org/10.1021/ac00165a024CrossRefGoogle Scholar
  33. Glaus R, Kaegi R, Krumeich F, Gunther D (2010) Phenomenological studies on structure and elemental composition of nanosecond and femtosecond laser-generated aerosols with implications on laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta Part B At Spectrosc 65(9–10):812–822.  https://doi.org/10.1016/j.sab.2010.07.005CrossRefGoogle Scholar
  34. Gonzalez JJ, Liu C, Wen SB, Mao X, Russo RE (2007a) Glass particles produced by laser ablation for ICPMS measurements. Talanta 73(3):577–582.  https://doi.org/10.1016/j.talanta.2007.04.028CrossRefGoogle Scholar
  35. Gonzalez JJ, Liu CY, Wen SB, Mao XL, Russo RE (2007b) Metal particles produced by laser ablation for ICP-MS measurements. Talanta 73(3):567–576.  https://doi.org/10.1016/j.talanta.2007.04.029CrossRefGoogle Scholar
  36. Gotz A, Heumann KG (1988) Iron isotope ratio measurements with the thermal ionization technique using a compact quadrupole mass-spectrometer. Int J Mass Spectrom Ion Process 83(3):319–330.  https://doi.org/10.1016/0168-1176(88)80036-3CrossRefGoogle Scholar
  37. Graham S, Pearson N, Jackson S, Griffin W, O’Reilly SY (2004) Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chem Geol 207(3–4):147–169.  https://doi.org/10.1016/j.chemgeo.2004.02.009CrossRefGoogle Scholar
  38. Hergenröder R (2006) Hydrodynamic sputtering as a possible source for fractionation in LA-ICP-MS. J Anal At Spectrom 21(5):517–524.  https://doi.org/10.1039/b600705hCrossRefGoogle Scholar
  39. Herzog GF, Xue S, Hall GS, Nyquist LE, Shih CY, Wiesmann H, Brownlee DE (1999) Isotopic and elemental composition of iron, nickel, and chromium in type I deep-sea spherules: implications for origin and composition of the parent micrometeoroids. Geochim Cosmochim Acta 63(9):1443–1457. https://doi.org/10.1016/s0016-7037(99)00011-3CrossRefGoogle Scholar
  40. Hill PS, Schauble EA, Shahar A, Tonui E, Young ED (2009) Experimental studies of equilibrium iron isotope fractionation in ferric aquo-chloro complexes. Geochim Cosmochim Acta 73(8):2366–2381. 10.1016/j.gca.2009.01.016CrossRefGoogle Scholar
  41. Hirata T, Ohno T (2001) In-situ isotopic ratio analysis of iron using laser ablation-multiple collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). J Anal At Spectrom 16(5):487–491.  https://doi.org/10.1039/b100946jCrossRefGoogle Scholar
  42. Horn I, von Blanckenburg F (2007) Investigation on elemental and isotopic fractionation during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry. Spectrochim Acta Part B At Spectrosc 62(4):410–422.  https://doi.org/10.1016/j.sab.2007.03.034CrossRefGoogle Scholar
  43. Horn I, Schoenberg R, von Blanckenburg F (2006a) Comment on “Analysis of Fe isotopes in sulfides and iron meteorites by laser ablation high-mass resolution multi-collector-ICP mass spectrometry” by J. Kosler, R.B. Pedersen, C. Kruber and P.J. Sylvester. J Anal At Spectrom 21(2):211–213.  https://doi.org/10.1039/b504720jCrossRefGoogle Scholar
  44. Horn I, von Blanckenburg F, Schoenberg R, Steinhoefel G, Markl G (2006b) In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes. Geochim Cosmochim Acta 70(14):3677–3688.  https://doi.org/10.1016/j.gca.2006.05.002CrossRefGoogle Scholar
  45. Huberty JM, Kita NT, Kozdon R, Heck PR, Fournelle JH, Spicuzza MJ, Xu H, Valley JW (2010) Crystal orientation effects in delta O-18 for magnetite and hematite by SIMS. Chem Geol 276(3–4):269–283.  https://doi.org/10.1016/j.chemgeo.2010.06.012CrossRefGoogle Scholar
  46. Hutcheon ID, Armstrong JT, Wasserburg GJ (1987) Isotopic studies of Mg, Fe, Mo, Ru and W in Fremdlinge from Allende refractory inclusions. Geochim Cosmochim Acta 51(12):3175–3192.  https://doi.org/10.1016/0016-7037(87)90126-8CrossRefGoogle Scholar
  47. Jackson SE, Güther D (2003) The nature and sources of laser induced isotopic fractionation in laser ablation-multicollector-inductively coupled plasma-mass spectrometry. J Anal At Spectrom 18(3):205–212.  https://doi.org/10.1039/b209620jCrossRefGoogle Scholar
  48. John SG, Adkins JF (2010) Analysis of dissolved iron isotopes in seawater. Mar Chem 119(1–4):65–76.  https://doi.org/10.1016/j.marchem.2010.01.001CrossRefGoogle Scholar
  49. Johnson CM, Beard BL (1999) Correction of instrumentally produced mass fractionation during isotopic analysis of Fe by thermal ionization mass spectrometry. Int J Mass Spectrom 193(1):87–99.  https://doi.org/10.1016/s1387-3806(99)00158-xCrossRefGoogle Scholar
  50. Kehm K, Hauri EH, Alexander CMO, Carlson RW (2003) High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS. Geochim Cosmochim Acta 67(15):2879–2891.  https://doi.org/10.1016/s0016-7037(03)00080-2CrossRefGoogle Scholar
  51. Kita NT, Huberty JM, Kozdon R, Beard BL, Valley JW (2011) High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation. Surf Interface Anal 43(1–2):427–431.  https://doi.org/10.1002/sia.3424CrossRefGoogle Scholar
  52. Kosler J, Pedersen RB, Kruber C, Sylvester PJ (2005) Analysis of Fe isotopes in sulfides and iron meteorites by laser ablation high-mass resolution multi-collector ICP mass spectrometry. J Anal At Spectrom 20(3):192–199.  https://doi.org/10.1039/b412169dCrossRefGoogle Scholar
  53. Kosler J, Pedersen R, Kruber C, Sylvester P (2006) Comment on “Analysis of Fe isotopes in sulfides and iron meteorites by laser ablation high-mass resolution multi-collector-ICP mass spectrometry”—Reply. J Anal At Spectrom 21(2):214–216. https://doi.org/doi:10.1039/b512647aCrossRefGoogle Scholar
  54. Kozdon R, Kita NT, Huberty JM, Fournelle JH, Johnson CA, Valley JW (2010) In situ sulfur isotope analysis of sulfide minerals by SIMS: precision and accuracy, with application to thermometry of similar to 3.5 Ga Pilbara cherts. Chem Geol 275(3–4):243–253. 10.1016/j.chemgeo.2010.05.015
  55. Kraus KA, Nelson F (1956) Anion exchange studies of the fission products. In: Proceedings of the first united conference of the peaceful uses of atomic energy, pp 113–125Google Scholar
  56. Lacan F, Radic A, Jeandel C, Poitrasson F, Sarthou G, Pradoux C, Freydier R (2008) Measurement of the isotopic composition of dissolved iron in the open ocean. Geophys Res Lett 35(24). https://doi.org/10.1029/2008gl035841
  57. Lam JWH, Horlick G (1990) A comparison of argon and mixed gas plasmas for inductively coupled plasma mass-spectrometry. Spectrochim Acta Part B At Spectrosc 45(12):1313–1325. https://doi.org/10.1016/0584-8547(90)80185-lCrossRefGoogle Scholar
  58. Lazarov M, Horn I (2015) Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochim Acta Part B At Spectrosc 111:64–73.  https://doi.org/10.1016/j.sab.2015.06.013CrossRefGoogle Scholar
  59. Li W, Huberty JM, Beard BL, Kita NT, Valley JW, Johnson CM (2013) Contrasting behavior of oxygen and iron isotopes in banded iron formations revealed by in situ isotopic analysis. Earth Planet Sci Lett 384:132–143CrossRefGoogle Scholar
  60. Long SE, Browner RF (1988) Influence of water on conditions in the inductively coupled agon pasma. Spectrochim Acta Part B At Spectrosc 43(12):1461–1471.  https://doi.org/10.1016/0584-8547(88)80185-xCrossRefGoogle Scholar
  61. Longerich HP, Fryer BJ, Strong DF (1987) Determination of lead isotope ratios by inductively coupled plasma-mass spectrometry (ICP-MS). Spectrochim Acta Part B At Spectrosc 42(1–2):39–48.  https://doi.org/10.1016/0584-8547(87)80048-4CrossRefGoogle Scholar
  62. Lyon IC, Saxton JM, Cornah SJ (1998) Isotopic fractionation during secondary ionisation mass spectrometry: crystallographic orientation effects in magnetite. Int J Mass Spectrom 172(1–2):115–122.  https://doi.org/10.1016/s0168-1176(97)00143-2CrossRefGoogle Scholar
  63. Malinovsky D, Stenberg A, Rodushkin I, Andren H, Ingri J, Ohlander B, Baxter DC (2003) Performance of high resolution MC-ICP-MS for Fe isotope ratio measurements in sedimentary geological materials. J Anal At Spectrom 18(7):687–695.  https://doi.org/10.1039/b302312eCrossRefGoogle Scholar
  64. Mandernack KW, Bazylinski DA, Shanks WC, Bullen TD (1999) Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science 285(5435):1892–1896.  https://doi.org/10.1126/science.285.5435.1892CrossRefGoogle Scholar
  65. Marechal CN, Telouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156(1–4):251–273.  https://doi.org/10.1016/s0009-2541(98)00191-0CrossRefGoogle Scholar
  66. Marin-Carbonne J, Rollion-Bard C, Luais B (2011) In-situ measurements of iron isotopes by SIMS: MC-ICP-MS intercalibration and application to a magnetite crystal from the Gunflint chert. Chem Geol 285(1–4):50–61.  https://doi.org/10.1016/j.chemgeo.2011.02.019CrossRefGoogle Scholar
  67. Marin-Carbonne J, Rollion-Bard C, Bekker A, Rouxel O, Agangi A, Cavalazzi B, Wohlgemuth-Ueberwasser CC, Hofmann A, McKeegan KD (2014) Coupled Fe and S isotope variations in pyrite nodules from Archean shale. Earth Planet Sci Lett 392:67–79.  https://doi.org/10.1016/j.epsl.2014.02.009CrossRefGoogle Scholar
  68. Marple VA, Rubow KL, Behm SM (1991) A microorifice uniform deposit impactor (MOUDI): description, calibration, and use. Aerosol Sci Tech 14:434–446CrossRefGoogle Scholar
  69. Nier AO (1939) The isotopic constitution of iron and chromium. Phys Rev 55:1143Google Scholar
  70. Nishizawa M, Yamamoto H, Ueno Y, Tsuruoka S, Shibuya T, Sawaki Y, Yamamoto S, Kon Y, Kitajima K, Komiya T, Maruyama S, Hirata T (2010) Grain-scale iron isotopic distribution of pyrite from Precambrian shallow marine carbonate revealed by a femtosecond laser ablation multicollector ICP-MS technique: possible proxy for the redox state of ancient seawater. Geochim Cosmochim Acta 74(9):2760–2778.  https://doi.org/10.1016/j.gca.2010.02.014CrossRefGoogle Scholar
  71. Niu HS, Houk RS (1994) Langmuir prove measurements of the ion extraction process in inductively-coupled plasma-mass spectrometry. 1. Spatially-resolved determination of electron-density and electron-temperature. Spectrochim Acta Part B At Spectrosc 49(12–14):1283–1303.  https://doi.org/10.1016/0584-8547(94)80109-6CrossRefGoogle Scholar
  72. Niu HS, Hu K, Houk RS (1991) Langmuir probe measurements of electron-temperature and electron-density behind the skimmer of an inductively coupled plasma mass-spectrometer. Spectrochim Acta Part B At Spectrosc 46(6–7):805–817.  https://doi.org/10.1016/0584-8547(91)80082-eCrossRefGoogle Scholar
  73. Oelze M, Schuessler JA, von Blanckenburg F (2016) Mass bias stabilization by Mg doping for Si stable isotope analysis by MC-ICP-MS. J Anal At Spectrom 31(10):2094–2100.  https://doi.org/10.1039/c6ja00218hCrossRefGoogle Scholar
  74. Oeser M, Dohmen R, Horn I, Schuth S, Weyer S (2015) Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines. Geochim Cosmochim Acta 154:130–150.  https://doi.org/10.1016/j.gca.2015.01.025CrossRefGoogle Scholar
  75. Oeser M, Ruprecht P, Weyer S (2018) Combined Fe-Mg chemical and isotopic zoning in olivine constraining magma mixing-to-eruption timescales for the continental arc volcano Irazu (Costa Rica) and Cr diffusion in olivine. Am Miner 103(4):582–599.  https://doi.org/10.2138/am-2018-6258CrossRefGoogle Scholar
  76. Oeser M, Weyer S, Horn I, Schuth S (2014) High-precision Fe and Mg isotope ratios of silicate reference glasses determined in situ by femtosecond LA-MC-ICP-MS and by solution nebulisation MC-ICP-MS. Geostand Geoanal Res 38(3):311–328.  https://doi.org/10.1111/j.1751-908X.2014.00288.xCrossRefGoogle Scholar
  77. Poitrasson F, Freydier R (2005) Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem Geol 222(1–2):132–147.  https://doi.org/10.1016/j.chemgeo.2005.07.005CrossRefGoogle Scholar
  78. Polyakov VB, Mineev SD (2000) The use of Moessbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64(5):849–865.  https://doi.org/10.1016/S0016-7037(99)00329-4CrossRefGoogle Scholar
  79. Rehkämper M, Halliday AN (1998) Accuracy and long-term reproducibility of lead isotopic measurements by multiple-collector inductively coupled plasma mass spectrometry using an external method for correction of mass discrimination. Int J Mass Spectrom 181:123–133.  https://doi.org/10.1016/s1387-3806(98)14170-2CrossRefGoogle Scholar
  80. Roe JE, Anbar AD, Barling J (2003) Nonbiological fractionation of Fe isotopes: evidence of an equilibrium isotope effect. Chem Geol 195(1–4):69–85. http://doi.org/10.1016/s0009-2541(02)00389-3CrossRefGoogle Scholar
  81. Rudge JF, Reynolds BC, Bourdon B (2009) The double spike toolbox. Chem Geol 265(3–4):420–431. https://doi.org/10.1016/j.chemgeo.2009.05.010CrossRefGoogle Scholar
  82. Russo RE, Mao XL, Gonzalez JJ, Zorba V, Yoo J (2013) Laser ablation in analytical chemistry. Anal Chem 85(13):6162–6177. https://doi.org/10.1021/ac4005327CrossRefGoogle Scholar
  83. Schauble EA, Rossman GR, Taylor HP (2001) Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy. Geochim Cosmochim Acta 65(15):2487–2497.  https://doi.org/10.1016/S0016-7037(01)00600-7CrossRefGoogle Scholar
  84. Schoenberg R, von Blanckenburg F (2005) An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS. Int J Mass Spectrom 242(2–3):257–272.  https://doi.org/10.1016/j.ijms.2004.11.025CrossRefGoogle Scholar
  85. Sio CKI, Dauphas N, Teng FZ, Chaussidon M, Helz RT, Roskosz M (2013) Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses. Geochim Cosmochim Acta 123:302–321.  https://doi.org/10.1016/j.gca.2013.06.008CrossRefGoogle Scholar
  86. Skulan JL, Beard BL, Johnson CM (2002) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite. Geochim Cosmochim Acta 66(17):2995–3015.  https://doi.org/10.1016/S0016-7037(02)00902-XCrossRefGoogle Scholar
  87. Steinhoefel G, Horn I, von Blanckenburg F (2009a) Matrix-independent Fe isotope ratio determination in silicates using UV femtosecond laser ablation. Chem Geol 268(1–2):67–73.  https://doi.org/10.1016/j.chemgeo.2009.07.010CrossRefGoogle Scholar
  88. Steinhoefel G, Horn I, von Blanckenburg F (2009b) Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation. Geochim Cosmochim Acta 73(18):5343–5360.  https://doi.org/10.1016/j.gca.2009.05.037CrossRefGoogle Scholar
  89. Steinhoefel G, von Blanckenburg F, Horn I, Konhauser KO, Beukes NJ, Gutzmer J (2010) Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation. Geochim Cosmochim Acta 74(9):2677–2696.  https://doi.org/10.1016/j.gca.2010.01.028CrossRefGoogle Scholar
  90. Stenberg A, Malinovsky D, Rodushkin I, Andren H, Ponter C, Ohlander B, Baxter DC (2003) Separation of Fe from whole blood matrix for precise isotopic ratio measurements by MC-ICP-MS: a comparison of different approaches. J Anal At Spectrom 18(1):23–28.  https://doi.org/10.1039/b210482bCrossRefGoogle Scholar
  91. Stookey LL (1970) Ferrozine-A new spetrophotometric reagent for iron. Anal Chem 42:779–781Google Scholar
  92. Strelow FWE (1980) Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4-percent cross-linked resin with high-concentrations of Hydrochloric-Acid. Talanta 27(9):727–732.  https://doi.org/10.1016/0039-9140(80)80166-4CrossRefGoogle Scholar
  93. Tang YQ, Trassy C (1986) Inductively coupled plasma-the role of water in axial excitation temperatures. Spectrochim Acta Part B At Spectrosc 41(1–2):143–150.  https://doi.org/10.1016/0584-8547(86)80146-xCrossRefGoogle Scholar
  94. Taylor PDP, Maeck R, Debievre P (1992) Determination of the absolute isotopic composition and atomic-weight of a reference sample of natural iron. Int J Mass Spectrom Ion Process 121(1–2):111–125. https://doi.org/10.1016/0168-1176(92)80075-cCrossRefGoogle Scholar
  95. Taylor PDP, Maeck R, Hendrickx F, Debievre P (1993a) The gravimetric preperation of synthetic mixtures if iron isotopes. Int J Mass Spectrom Ion Process 128(1–2):91–97. https://doi.org/10.1016/0168-1176(93)87018-nCrossRefGoogle Scholar
  96. Taylor PDP, Valkiers S, Debievre P, Flegel U, Kruck T (1993b) Stable-isotope analysis of iron by gas-phase electron-impact mass-spectrometry. Anal Chem 65(21):3166–3167. https:doi.org/10.1021/ac00069a036CrossRefGoogle Scholar
  97. Ting BTG, Janghorbani M (1986) Inductively coupled plasma mass-spectrometry applied to isotopic analysis of iron in human fecal matter. Anal Chem 58(7):1334–1340.  https://doi.org/10.1021/ac00298a014CrossRefGoogle Scholar
  98. Turnlund JR, Keyes WR (1990) Automated-analysis of stable isotopes of Zinc, Copper, Iron, Calcium, and Magnesium by thermal ionization mass-spectrometry using double isotope-dilution from tracer studies in humans. J Micronutr Anal 7(2):117–145Google Scholar
  99. Valley GE, Anderson HH (1947) A comparison of the abundance ratios of the isotopes of terrestrial and meteoritic iron. J Am Chem Soc 69:1871–1875CrossRefGoogle Scholar
  100. Van der Walt TN, Strelow FWE, Haasbroek FJ (1985a) Separation of Fe-52 from Chromium cyclotron targets on the 2-percent cross-linked anion-exchange resin AG1-X2 in hydrochloric-acid. Talanta 32(4):313–317.  https://doi.org/10.1016/0039-9140(85)80086-2CrossRefGoogle Scholar
  101. Van der Walt TN, Strelow FWE, Verheij R (1985b) The influence of crosslinkage on the distribution coefficients and anion-exchange behavior of some elements in hydrochloric-acid. Solvent Extr Ion Exc 3(5):723–740.  https://doi.org/10.1080/07366298508918536CrossRefGoogle Scholar
  102. Virtasalo JJ, Whitehouse MJ, Kotilainen AT (2013) Iron isotope heterogeneity in pyrite fillings of Holocene worm burrows. Geology 41(1):39–42.  https://doi.org/10.1130/g33556.1CrossRefGoogle Scholar
  103. Vogl J, Klingbeil P, Pritzkow W, Riebe G (2003) High accuracy measurements of Fe isotopes using hexapole collision cell MC-ICP-MS and isotope dilution for certification of reference materials. J Anal At Spectrom 18(9):1125–1132.  https://doi.org/10.1039/b301812aCrossRefGoogle Scholar
  104. Völkening J, Papanastassiou DA (1989) Iron isotope anomalies. Astrophys J 347(1):L43–L46Google Scholar
  105. Walczyk T (1997) Iron isotope ratio measurements by negative thermal ionisation mass spectrometry using FeF4-molecular ions. Int J Mass Spectrom Ion Process 161(1–3):217–227.  https://doi.org/10.1016/s0168-1176(96)04532-6CrossRefGoogle Scholar
  106. Welch S, Beard B, Johnson C, Braterman P (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe (II) and Fe (III). Geochim Cosmochim Acta 67(22):4231–4250CrossRefGoogle Scholar
  107. Weyer S, Anbar AD, Brey GP, Munker C, Mezger K, Woodland AB (2005) Iron isotope fractionation during planetary differentiation. Earth Planet Sci Lett 240(2):251–264.  https://doi.org/10.1016/j.epsl.2005.09.023CrossRefGoogle Scholar
  108. Weyer S, Schwieters J (2003) High precision Fe isotope measurements with high mass resolution MC-ICPMS. Int J Mass Spectrom 226(3):355–368.  https://doi.org/10.1016/s1387-3806(03)00078-2CrossRefGoogle Scholar
  109. Weyrauch M, Oeser M, Bruske A, Weyer S (2017) In situ high-precision Ni isotope analysis of metals by femtosecond-LA-MC-ICP-MS. J Anal At Spectrom 32(7):1312–1319.  https://doi.org/10.1039/c7ja00147aCrossRefGoogle Scholar
  110. Whitehouse MJ, Fedo CM (2007) Microscale heterogeneity of Fe isotopes in > 3.71 Ga banded iron formation from the Isua Greenstone Belt, Southwest Greenland. Geology 35(8):719–722.  https://doi.org/10.1130/g23582a.1CrossRefGoogle Scholar
  111. Yamakawa A, Yamashita K, Makishima A, Nakamura E (2009) Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry. Anal Chem 81(23):9787–9794.  https://doi.org/10.1021/ac901762aCrossRefGoogle Scholar
  112. Yoshiaki K, Nishizawa M, Sawaki Y, Ueno Y, Komiya T, Yamada K, Yoshida N, Hirata T, Wada H, Maruyama S (2012) In situ iron isotope analyses of pyrite and organic carbon isotope ratios in the Fortescue Group: metabolic variations of a Late Archean Ecosystem. Precambr Res 2012:169–193Google Scholar
  113. Yoshiya K, Sawaki Y, Hirata T, Maruyama S, Komiya T (2015a) In-situ iron isotope analysis of pyrites in similar to 3.7 Ga sedimentary protoliths from the Isua supracrustal belt, southern West Greenland. Chem Geol 401:126–139.  https://doi.org/10.1016/j.chemgeo.2015.02.022CrossRefGoogle Scholar
  114. Yoshiya K, Sawaki Y, Shibuya T, Yamamoto S, Komiya T, Hirata T, Maruyama S (2015b) In-situ iron isotope analyses of pyrites from 3.5 to 3.2 Ga sedimentary rocks of the Barberton Greenstone Belt, Kaapvaal Craton. Chem Geol 403:58–73.  https://doi.org/10.1016/j.chemgeo.2015.03.007CrossRefGoogle Scholar
  115. Zheng XY, Beard BL, Johnson CM (2018) Assessment of matrix effects associated with Fe isotope analysis using 266 nm femtosecond and 193 nm nanosecond laser ablation multi-collector inductively coupled plasma mass spectrometry. J Anal At Spectrom 33(1):68–83.  https://doi.org/10.1039/c7ja00272fCrossRefGoogle Scholar
  116. Zheng XY, Beard BL, Lee S, Reddy TR, Xu HF, Johnson CM (2017) Contrasting particle size distributions and Fe isotope fractionations during nanosecond and femtosecond laser ablation of Fe minerals: implications for LA-MC-ICP-MS analysis of stable isotopes. Chem Geol 450:235–247.  https://doi.org/10.1016/j.chemgeo.2016.12.038CrossRefGoogle Scholar
  117. Zhu GX, Browner RF (1988) Study of the influence of water-vapor loading and interface pressure in inductively coupled plasma mass-spectrometry. J Anal At Spectrom 3(6):781–789.  https://doi.org/10.1039/ja9880300781CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Institute of MineralogyLeibniz Universität HannoverHannoverGermany

Personalised recommendations