Electron–Induced Domain

  • Nahid TalebiEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 228)


EELS and CL have been introduced as efficient tools for probing nanooptical excitations in single nanostructures, with a nanometre spatial resolution and meV energy resolution. Thanks to the ultrafast interaction of localized relativistic electrons with the optical modes of nanostructures in TEMs, electron beams appear as an ultra-broadband probe of sample resonances. The inelastic interaction of a swift electron with nanostructures can be understood using a useful classical approach, as discussed in the previous chapter, that has been proven to be identical to the quantum-mechanical treatment when averaging over electron impact parameters weighted by the spot intensity (Ritchie and Howie in Philos Mag A 58(5):753–767, 1988 [3]).


  1. 1.
    N. Talebi, Electron-light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry AU - Talebi, Nahid. Adv. Phys.: X 3(1), 1499438. (2018). Scholar
  2. 2.
    N. Talebi, A directional, ultrafast and integrated few-photon source utilizing the interaction of electron beams and plasmonic nanoantennas. New J. Phys. 16(5), 053021 (2014). Scholar
  3. 3.
    R.H. Ritchie, A. Howie, Inelastic-scattering probabilities in scanning-transmission electron-microscopy (in English). Philos. Mag. A 58(5), 753–767 (1988) (Online). Available: <Go to ISI>://WOS:A1988Q932100005Google Scholar
  4. 4.
    F.J.G. de Abajo, Optical excitations in electron microscopy (in English). Rev. Mod. Phys. 82(1), 209–275 (2010). Scholar
  5. 5.
    F.J.G. de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy,” (in English). Phys. Rev. Lett. 100(10) (2008). doi: Artn 106804 10.1103/Physrevlett.100.106804Google Scholar
  6. 6.
    P. Schattschneider, Fundamentals of Inelastic Electron Scattering (Springer, Wien, 1986)CrossRefGoogle Scholar
  7. 7.
    A. Losquin, M. Kociak, Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states (in English). Acs Photonics 2(11), 1619–1627 (2015). Scholar
  8. 8.
    A. Losquin et al., Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements (in English). Nano Lett. 15(2), 1229–1237 (2015). Scholar
  9. 9.
    M. Kociak et al., Seeing and measuring in colours: electron microscopy and spectroscopies applied to nano-optics (in English). Cr Phys. 15(2–3), 158–175 (2014). Scholar
  10. 10.
    T. Coenen, N.M. Haegel, Cathodoluminescence for the 21st century: Learning more from light (in English). Appl. Phys. Rev. 4(3) (2017). doi: Artn 031103 10.1063/1.4985767Google Scholar
  11. 11.
    T. Coenen, S.V. den Hoedt, A. Polman, A new cathodoluminescence system for nanoscale optics, materials science, and geology. Microsc. Today 24(3), 12–19 (2016). Scholar
  12. 12.
    T. Coenen, E.J.R. Vesseur, A. Polman, Angle-resolved cathodoluminescence spectroscopy (in English). Appl. Phys. Lett. 99(14) (2011). doi: Artn 143103 10.1063/1.3644985Google Scholar
  13. 13.
    F.J. García de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100(10), 106804 (2008).
  14. 14.
    J. Nelayah et al., Mapping surface plasmons on a single metallic nanoparticle (in English). Nat. Phys. 3(5), 348–353 (2007). Scholar
  15. 15.
    N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C.T. Koch, P.A. van Aken, Wedge Dyakonov waves and Dyakonov Plasmons in topological insulator Bi2Se3 probed by electron beams. ACS Nano 10(7), 6988–6994 (2016). Scholar
  16. 16.
    N. Talebi et al., Excitation of mesoscopic plasmonic tapers by relativistic electrons: phase matching versus eigenmode resonances (in English). ACS Nano 9(7), 7641–7648 (2015). Scholar
  17. 17.
    L. Gu et al., Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets (in English). Phys. Rev. B 83(19) (2011). doi: Artn 195433 10.1103/Physrevb.83.195433Google Scholar
  18. 18.
    B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12(10), 5239–5244 (2012). Scholar
  19. 19.
    E.P. Bellido, Y. Zhang, A. Manjavacas, P. Nordlander, G.A. Botton, Plasmonic coupling of multipolar edge modes and the formation of gap modes (in English). Acs Photonics 4(6), 1558–1565 (2017). Scholar
  20. 20.
    A. Campos et al., Plasmonic breathing and edge modes in aluminum nanotriangles (in English). Acs Photonics 4(5), 1257–1263 (2017). Scholar
  21. 21.
    Y. Fujiyoshi, T. Nemoto, H. Kurata, Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy (in English). Ultramicroscopy 175, 116–120 (2017). Scholar
  22. 22.
    D. Rossouw, G.A. Botton, Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding (in English). Phys. Rev. Lett. 110(6) (2013). doi: Artn 066801
  23. 23.
    P. Shekhar, M. Malac, V. Gaind, N. Dalili, A. Meldrum, Z. Jacob, Momentum-resolved electron energy loss spectroscopy for mapping the photonic density of states (in English). Acs Photonics 4(4), 1009–1014 (2017). Scholar
  24. 24.
    Y. Zhu, P.N.H. Nakashima, A.M. Funston, L. Bourgeois, J. Etheridge, Topologically enclosed aluminum voids as plasmonic nanostructures (in English). ACS Nano 11(11), 11383–11392 (2017). Scholar
  25. 25.
    G. Guzzinati, A. Beche, H. Lourenco-Martins, J. Martin, M. Kociak, J. Verbeeck, Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams (in English). Nat. Commun. 8 (2017). doi:Artn 14999 10.1038/Ncomms14999Google Scholar
  26. 26.
    L.F. Zagonel et al., Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires. Phys. Rev. B 93(20), 205410 (2016).
  27. 27.
    N. Talebi, Schrödinger electrons interacting with optical gratings: quantum mechanical study of the inverse Smith–Purcell effect. New J. Phys. 18(12), 123006 (2016). Scholar
  28. 28.
    O.L. Krivanek et al., Vibrational spectroscopy in the electron microscope (in English). Nature 514(7521), 209–212 (2014). Scholar
  29. 29.
    A. Konečná et al.Google Scholar
  30. 30.
    P.R. Edwards, R.W. Martin, Cathodoluminescence nano-characterization of semiconductors. Semicond. Sci. Technol. 26(6), 064005 (2011). Scholar
  31. 31.
    R.F. Egerton, Electron energy-loss spectroscopy in the TEM (in English). Rep. Prog. Phys. 72(1) (2009). doi:Artn 016502 10.1088/0034-4885/72/1/016502Google Scholar
  32. 32.
    N. Talebi, W. Sigle, R. Vogelgesang, P. van Aken, Numerical simulations of interference effects in photon-assisted electron energy-loss spectroscopy. New J. Phys. 15(5), 053013 (2013). Scholar
  33. 33.
    S. Guo et al., Reflection and phase matching in plasmonic gold tapers. Nano Lett. 16(10), 6137–6144 (2016) Scholar
  34. 34.
    S.J. Smith, E.M. Purcell, Visible light from localized surface charges moving across a grating (in English). Phys. Rev. 92(4), 1069–1069 (1953). doi: Scholar
  35. 35.
    A. Gover, P. Sprangle, A unified theory of magnetic Bremsstrahlung, electrostatic Bremsstrahlung, Compton-Raman scattering, and Cerenkov-Smith-Purcell free-electron lasers (in English). Ieee J. Quantum Elect. 17(7), 1196–1215 (1981). Scholar
  36. 36.
    N. Yamamoto, F.J.G. de Abajo, V. Myroshnychenko, Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy (in English). Phys. Rev. B 91(12) (2015). doi:Artn 125144 10.1103/Physrevb.91.125144Google Scholar
  37. 37.
    J.P. Verboncoeur, Particle simulation of plasmas: review and advances (in English). Plasma Phys. Contr. F 47, A231–A260 (2005). Scholar
  38. 38.
    C.S. Meierbachtol, A.D. Greenwood, J.P. Verboncoeur, B. Shanker, Conformal electromagnetic particle in cell: a review (in English). IEEE T Plasma Sci. 43(11), 3778–3793 (2015). Scholar
  39. 39.
    R. Lee, H.H. Klein, J.P. Boris, Computer-simulation of electromagnetic instabilities in a relativistic plasma (in English). B Am. Phys. Soc. 18(4), 633–633 (1973) (Online). Available: <Go to ISI>://WOS:A1973P314600628Google Scholar
  40. 40.
    R. Lee, J.P. Boris, I. Haber, Electromagnetic simulation codes for relativistic plasmas (in English). B Am. Phys. Soc. 17(11), 1048–1048 (1972) (Online). Available: <Go to ISI>://WOS:A1972N819700494Google Scholar
  41. 41.
    R.A. Fonseca et al., Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators (in English). Plasma Phys. Contr. F, 55(12) (2013). doi:Artn 124011 10.1088/0741-3335/55/12/124011Google Scholar
  42. 42.
    C.G.R. Geddes et al., Laser guiding at relativistic intensities and wakefield particle acceleration in plasma channels (in English). Aip Conf. Proc. 737, 521–527 (2004) (Online). Available: <Go to ISI>://WOS:000226549000055Google Scholar
  43. 43.
    A. Pukhov, Z.M. Sheng, J. Meyer-ter-Vehn, Particle acceleration in relativistic laser channels (in English). Phys. Plasmas 6(7), 2847–2854 (1999). Scholar
  44. 44.
    N. Talebi et al., Merging transformation optics with electron-driven photon sources. Nat. Commun. (2019)Google Scholar
  45. 45.
    N. Talebi, Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function. J. Opt.-Uk 19(10), 103001 (2017). Scholar
  46. 46.
    S.N. Lyle, Self Force and Inertia, Old Light on New Ideas (Springer, Heidelberg, 2010)CrossRefGoogle Scholar
  47. 47.
    J.D. Jackson, Classical Electrodynamics (Wiley, USA, 1999)zbMATHGoogle Scholar
  48. 48.
    A. Bek, R. Vogelgesang, K. Kern, Apertureless scanning near field optical microscope with sub-10 nm resolution. Rev. Sci. Instrum. 77(4), 043703 (2006). Scholar
  49. 49.
    T. Neuman, P. Alonso-González, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, J. Aizpurua, Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photonics Rev. 9(6), 637–649 (2015). Scholar
  50. 50.
    B.J.M. Brenny, T. Coenen, A. Polman, Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. J. Appl. Phys. 115(24), 244307 (2014). Scholar
  51. 51.
    J.D. Jackson, Classical Electrodynamics (Wiley, USA, 1998)zbMATHGoogle Scholar
  52. 52.
    M. Esslinger, R. Vogelgesang, Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes (in English). ACS Nano 6(9), 8173–8182 (2012). Scholar
  53. 53.
    S. Glasgow, M. Ware, J. Peatross, Poynting’s theorem and luminal total energy transport in passive dielectric media (in English). Phys. Rev. E 64(4) (2001). doi: Artn 046610

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Stuttgart Center for Electron Microscopy (StEM)Max Planck Institute for Solid State ResearchStuttgartGermany
  2. 2.Institute of Experimental and Applied PhysicsChristian-Albrechts University in KielKielGermany

Personalised recommendations