Advertisement

Electron-Light Interactions

  • Nahid TalebiEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 228)

Abstract

Swift electrons can undergo inelastic interactions with single electrons as well as collective electron excitations within the sample, such as plasmon and phonon polaritons, as a result of which they lose energy (Garcia de Abajo in Rev. Mod. Phys. 82:209–275, 2010 [1]). Within the classical formalism, EEL spectra are theoretically rationalized by a simple but intuitive interpretation that has a direct correspondence with first principles, demanding that all inelastic signals are collected (Ritchie and Howie, in Philos. Mag. A 58:753–767, 1988 [2].

References

  1. 1.
    F.J.G. de Abajo, Optical excitations in electron microscopy (in English). Rev. Mod. Phys. 82(1), 209–275 (2010).  https://doi.org/10.1103/revmodphys.82.209ADSCrossRefGoogle Scholar
  2. 2.
    R.H. Ritchie, A. Howie, Inelastic-scattering probabilities in scanning-transmission electron-microscopy (in English). Philos. Mag. A 58(5), 753–767 (1988). [Online]. Available: < Go to ISI > ://WOS:A1988Q932100005Google Scholar
  3. 3.
    N. Talebi, Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function. J. Opt. UK 19(10), 103001 (2017).  https://doi.org/10.1088/2040-8986/aa8041ADSCrossRefGoogle Scholar
  4. 4.
    F.J.G. de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy (in English). Phys. Rev. Lett. 100(10), 106804 (2008).  https://doi.org/10.1103/physrevlett.100.106804ADSCrossRefGoogle Scholar
  5. 5.
    B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Toroidal Plasmonic Eigenmodes in Oligomer Nanocavities for the visible. Nano Lett. 12(10), 5239–5244 (2012).  https://doi.org/10.1021/nl302418nADSCrossRefGoogle Scholar
  6. 6.
    F.P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Universal dispersion of surface plasmons in flat nanostructures (in English). Nat. Commun. 5, 3604 (2014).  https://doi.org/10.1038/ncomms4604ADSCrossRefGoogle Scholar
  7. 7.
    S.J. Barrow, D. Rossouw, A.M. Funston, G.A. Botton, P. Mulvaney, Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy (in English). Nano Lett. 14(7), 3799–3808 (2014).  https://doi.org/10.1021/nl5009053ADSCrossRefGoogle Scholar
  8. 8.
    F.P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Dark plasmonic breathing modes in silver nanodisks (in English). Nano Lett. 12(11), 5780–5783 (2012).  https://doi.org/10.1021/nl3030938ADSCrossRefGoogle Scholar
  9. 9.
    J. Nelayah et al., Mapping surface plasmons on a single metallic nanoparticle (in English). Nat. Phys. 3(5), 348–353 (2007).  https://doi.org/10.1038/nphys575CrossRefGoogle Scholar
  10. 10.
    D. DeJarnette, D.K. Roper, Electron energy loss spectroscopy of gold nanoparticles on graphene (in English). J. Appl. Phys. 116(5), 054313 (2014).  https://doi.org/10.1063/1.4892620ADSCrossRefGoogle Scholar
  11. 11.
    O. Nicoletti, M. Wubs, N.A. Mortensen, W. Sigle, P.A. van Aken, P.A. Midgley, Surface plasmon modes of a single silver nanorod: an electron energy loss study (in English). Opt. Express 19(16), 15371–15379 (2011).  https://doi.org/10.1364/Oe.19.015371ADSCrossRefGoogle Scholar
  12. 12.
    G. Boudarham, M. Kociak, Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes (in English). Phys. Rev. B 85(24), 245447 (2012).  https://doi.org/10.1103/physrevb.85.245447ADSCrossRefGoogle Scholar
  13. 13.
    N. Talebi, B. Ögüt, W. Sigle, R. Vogelgesang, P.A. van Aken, On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities. Appl. Phys. A 116(3), 947–954 (2014).  https://doi.org/10.1007/s00339-014-8532-yADSCrossRefGoogle Scholar
  14. 14.
    B. Ogut, R. Vogelgesang, W. Sigle, N. Talebi, C.T. Koch, P.A. van Aken, Hybridized metal slit eigenmodes as an illustration of Babinet’s principle (in English). ACS Nano 5(8), 6701–6706 (2011).  https://doi.org/10.1021/nn2022414CrossRefGoogle Scholar
  15. 15.
    R. Walther et al., Coupling of surface-plasmon-polariton-hybridized cavity modes between submicron slits in a thin gold film (in English). Acs Photonics 3(5), 836–843 (2016).  https://doi.org/10.1021/acsphotonics.6b00045CrossRefGoogle Scholar
  16. 16.
    A. Salomon, Y. Prior, M. Fedoruk, J. Feldmann, R. Kolkowski, J. Zyss, Plasmonic coupling between metallic nanocavities (in English). J. Opt. UK 16(11), 114012 (2014).  https://doi.org/10.1088/2040-8978/16/11/114012ADSCrossRefGoogle Scholar
  17. 17.
    L. Gu et al., Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets (in English). Phys. Rev. B 83(19), 195433 (2011).  https://doi.org/10.1103/physrevb.83.195433ADSCrossRefGoogle Scholar
  18. 18.
    X.B. Xu et al., Tunable nanoscale confinement of energy and resonant edge effect in triangular gold nanoprisms (in English). J. Phys. Chem. C 117(34), 17748–17756 (2013).  https://doi.org/10.1021/jp4051929CrossRefGoogle Scholar
  19. 19.
    E.P. Bellido, A. Manjavacas, Y. Zhang, Y. Cao, P. Nordlander, G.A. Botton, Electron energy-loss spectroscopy of multipolar edge and cavity modes in silver nanosquares (in English). Acs Photonics 3(3), 428–433 (2016).  https://doi.org/10.1021/acsphotonics.5b00594CrossRefGoogle Scholar
  20. 20.
    N. Yamamoto, F.J.G. de Abajo, V. Myroshnychenko, Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy (in English). Phys. Rev. B 91(12), 125144 (2015).  https://doi.org/10.1103/physrevb.91.125144ADSCrossRefGoogle Scholar
  21. 21.
    N. Talebi et al., Excitation of mesoscopic plasmonic tapers by relativistic electrons: phase matching versus eigenmode resonances (in English). ACS Nano 9(7), 7641–7648 (2015).  https://doi.org/10.1021/acsnano.5b03024MathSciNetCrossRefGoogle Scholar
  22. 22.
    S.R. Guo et al., Reflection and phase matching in plasmonic gold tapers (in English). Nano Lett. 16(10), 6137–6144 (2016).  https://doi.org/10.1021/acs.nanolett.6b02353ADSCrossRefGoogle Scholar
  23. 23.
    T. Coenen, S.V. den Hoedt, A. Polman, A new cathodoluminescence system for nanoscale optics, materials science, and geology. Microsc. Today 24(3), 12–19 (2016).  https://doi.org/10.1017/S1551929516000377CrossRefGoogle Scholar
  24. 24.
    D.R. Glenn et al., Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours (in English). Sci. Rep. 2, 865 (2012).  https://doi.org/10.1038/srep00865CrossRefGoogle Scholar
  25. 25.
    M. Kociak et al., Seeing and measuring in colours: electron microscopy and spectroscopies applied to nano-optics (in English). C. R. Phys. 15(2–3), 158–175 (2014).  https://doi.org/10.1016/j.crhy.2013.10.003ADSCrossRefGoogle Scholar
  26. 26.
    F.J.G. de Abajo et al., Plasmonic and new plasmonic materials: general discussion (in English). Faraday Discuss. 178, 123–149 (2015).  https://doi.org/10.1039/c5fd90022kADSCrossRefGoogle Scholar
  27. 27.
    B. Barwick, D. J. Flannigan, A. H. Zewail (2009) Photon-induced near-field electron microscopy. Nature 462, 902. 12/17/online 2009,  https://doi.org/10.1038/nature08662; https://www.nature.com/articles/nature08662#supplementary-informationADSCrossRefGoogle Scholar
  28. 28.
    B. Barwick, A.H. Zewail, Photonics and plasmonics in 4D ultrafast electron microscopy (in English). Acs Photonics 2(10), 1391–1402 (2015).  https://doi.org/10.1021/acsphotonics.5b00427CrossRefGoogle Scholar
  29. 29.
    S.T. Park, M.M. Lin, A.H. Zewail, Photon-induced near-field electron microscopy (PINEM): theoretical and experimental (in English). New J. Phys. 12, 123028 (2010).  https://doi.org/10.1088/1367-2630/12/12/123028ADSCrossRefGoogle Scholar
  30. 30.
    Y.M. Liu, X. Zhang, Metamaterials: a new frontier of science and technology (in English). Chem. Soc. Rev. 40(5), 2494–2507 (2011).  https://doi.org/10.1039/c0cs00184hCrossRefGoogle Scholar
  31. 31.
    N. Engheta, R.W. Ziolkowski, A positive future for double-negative metamaterials (in English). IEEE Trans. Microw. Theor. 53(4), 1535–1556 (2005).  https://doi.org/10.1109/Tmtt.2005.845188CrossRefGoogle Scholar
  32. 32.
    P. L. Kapitza, P. A. M. Dirac, The reflection of electrons from standing light waves (in English). Proc. Camb. Philos. Soc. 29, 297–300 (1993) [Online]. Available: <Go to ISI>: //WOS:000200163900030CrossRefGoogle Scholar
  33. 33.
    H. Batelaan, Colloquium: Illuminating the Kapitza-Dirac effect with electron matter optics (in English). Rev. Mod. Phys. 79(3), 929–941 (2007).  https://doi.org/10.1103/revmodphys.79.929ADSCrossRefGoogle Scholar
  34. 34.
    S.J. Wu, Y.J. Wang, Q. Diot, M. Prentiss, Splitting matter waves using an optimized standing-wave light-pulse sequence (in English). Phys. Rev. A 71(4), 043602 (2005).  https://doi.org/10.1103/physreva.71.043602ADSCrossRefGoogle Scholar
  35. 35.
    E.M. Rasel, M.K. Oberthaler, H. Batelaan, J. Schmiedmayer, A. Zeilinger, Atom wave interferometry with diffraction gratings of light (in English). Phys. Rev. Lett. 75(14), 2633–2637 (1995).  https://doi.org/10.1103/PhysRevLett.75.2633ADSCrossRefGoogle Scholar
  36. 36.
    A.G. Hayrapetyan, K.K. Grigoryan, J.B. Gotte, R.G. Petrosyan, Kapitza-Dirac effect with traveling waves (in English). New J. Phys. 17, 082002 (2015).  https://doi.org/10.1088/1367-2630/17/8/082002ADSCrossRefGoogle Scholar
  37. 37.
    D.L. Freimund, K. Aflatooni, H. Batelaan, Observation of the Kapitza-Dirac effect (in English). Nature 413(6852), 142–143 (2001).  https://doi.org/10.1038/35093065ADSCrossRefGoogle Scholar
  38. 38.
    A. Friedman, A. Gover, G. Kurizki, S. Ruschin, A. Yariv, Spontaneous and stimulated-emission from quasifree electrons (in English). Rev. Mod. Phys. 60(2), 471–535 (1988).  https://doi.org/10.1103/RevModPhys.60.471ADSCrossRefGoogle Scholar
  39. 39.
    A. Gover, P. Sprangle, A unified theory of magnetic Bremsstrahlung, electrostatic Bremsstrahlung, Compton-Raman Scattering, and Cerenkov-Smith-Purcell free-electron lasers (in English). IEEE J. Quantum Electron 17(7), 1196–1215 (1981).  https://doi.org/10.1109/Jqe.1981.1071257ADSCrossRefGoogle Scholar
  40. 40.
    P. Bucksbaum, T. Moller, K. Ueda, Frontiers of free-electron laser science (in English). J. Phys. B At. Mol. Opt. 46(16), 160201 (2013).  https://doi.org/10.1088/0953-4075/46/16/160201ADSCrossRefGoogle Scholar
  41. 41.
    R. Falcone, M. Dunne, H. Chapman, M. Yabashi, K. Ueda, Frontiers of free-electron laser science II (in English). J. Phys. B At. Mol. Opt. 49(18), 180201 (2016).  https://doi.org/10.1088/0953-4075/49/18/180201ADSCrossRefGoogle Scholar
  42. 42.
    Z. R. Huang, K. J. Kim, Review of x-ray free-electron laser theory (in English). Phys. Rev. Spec. Top. Ac. 10(3), 034801 (2007).  https://doi.org/10.1103/physrevstab.10.034801
  43. 43.
    B.W.J. McNeil, N.R. Thompson, X-ray free-electron lasers (in English). Nat. Photonics 4(12), 814–821 (2010).  https://doi.org/10.1038/nphoton.2010.239ADSCrossRefGoogle Scholar
  44. 44.
    D.B. Melrose, K.G. Ronnmark, R.G. Hewitt, Terrestrial kilometric radiation—the cyclotron theory (in English). J. Geophys. Res. Space 87(Na7), 5140–5150 (1982).  https://doi.org/10.1029/Ja087ia07p05140ADSCrossRefGoogle Scholar
  45. 45.
    D.M. Asner et al., Single-electron detection and spectroscopy via relativistic cyclotron radiation (in English). Phys. Rev. Lett. 114(16), 162501 (2015).  https://doi.org/10.1103/physrevlett.114.162501ADSCrossRefGoogle Scholar
  46. 46.
    V. L. Ginzburg, Radiation of uniformly moving sources (Vavilov-Cherenkov effect, transition radiation, and other phenomena) (in Russian). Usp Fiz Nauk+ 166(10), 1033–1042 (1996). [Online]. Available: <Go to ISI>://WOS:A1996VV43300001Google Scholar
  47. 47.
    R. Garciamolina, A. Grasmarti, A. Howie, R.H. Ritchie, Retardation effects in the interaction of charged-particle beams with bounded condensed media (in English). J. Phys. C Solid State 18(27), 5335–5345 (1985).  https://doi.org/10.1088/0022-3719/18/27/019ADSCrossRefGoogle Scholar
  48. 48.
    E. Kröger, Calculations of the energy losses of fast electrons in thin foils with retardation. Zeitschrift für Physik A Hadrons and Nuclei, Journal Article 216(2), 115–135 (1968).  https://doi.org/10.1007/bf01390952ADSCrossRefGoogle Scholar
  49. 49.
    P. A. Cherenkov, The spectrum of visible radiation produced by fast electrons (in English). C. R. Acad. Sci. Urss 20, 651–655 (1938). [Online]. Available: <Go to ISI>://WOS:000201891900170Google Scholar
  50. 50.
    P. A. Cherenkov, Absolute output of radiation caused by electrons moving within a medium with super-light velocity (in English). C. R. Acad. Sci. Urss 21, 116–121 (1938). [Online]. Available: <Go to ISI>://WOS:000201892000033Google Scholar
  51. 51.
    P. A. Cherenkov, Spatial distribution of visible radiation produced by fast electrons (in English). C. R. Acad. Sci. Urss 21, 319–321 (1938). [Online]. Available: <Go to ISI>://WOS:000201892000086Google Scholar
  52. 52.
    I. Frank, I. Tamm, Coherent visible radiation of fast electrons passing through matter (in English). C. R. Acad. Sci. Urss 14, 109–114 (1937). [Online]. Available: <Go to ISI>://WOS:000201973400025Google Scholar
  53. 53.
    W. Li, C.-X. Yu, S.-B. Liu, Quantum theory of Cherenkov radiation in an anisotropic absorbing media, vol. 7501, pp. 750108 (2009). [Online]. Available: http://dx.doi.org/10.1117/12.847455
  54. 54.
    I. Kaminer et al., Quantum Čerenkov radiation: spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6(1), 011006 (2016). [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevX.6.011006
  55. 55.
    R. Matloob, A. Ghaffari, Cerenkov radiation in a causal permeable medium (in English). Phys. Rev. A 70(5), 052116 (2004).  https://doi.org/10.1103/physreva.70.052116ADSCrossRefGoogle Scholar
  56. 56.
    S.G. Chefranov, Relativistic generalization of the Landau criterion as a new foundation of the Vavilov-Cherenkov radiation theory (in English). Phys. Rev. Lett. 93(25), 254801 (2014).  https://doi.org/10.1103/physrevlett.93.254801ADSCrossRefGoogle Scholar
  57. 57.
    K. Tanha, A.M. Pashazadeh, B.W. Pogue, Review of biomedical Cerenkov luminescence imaging applications (in English). Biomed. Opt. Express 6(8), 3053–3065 (2015).  https://doi.org/10.1364/Boe.6.003053CrossRefGoogle Scholar
  58. 58.
    M. Buchanan, Thesis: Minkowski, Abraham and the photon momentum. Nat. Phys. 3(2), 73–73 02//print 2007. [Online]. Available: http://dx.doi.org/10.1038/nphys519
  59. 59.
    C. V. Festenberg, Energy loss measurements on III–V compounds. Zeitschrift für Physik, journal article 227(5), 453–481 (1969).  https://doi.org/10.1007/bf01394892CrossRefGoogle Scholar
  60. 60.
    C.H. Chen, J. Silcox, R. Vincent, Electron-energy losses in silicon—bulk and surface Plasmons and Cerenkov Radiation (in English). Phys. Rev. B 12(1), 64–71 (1975).  https://doi.org/10.1103/Physrevb.12.64ADSCrossRefGoogle Scholar
  61. 61.
    M. Stoger-Pollach et al., Cerenkov losses: a limit for bandgap determination and Kramers-Kronig analysis (in English). Micron 37(5), 396–402 (2006).  https://doi.org/10.1016/j.micron.2006.01.001CrossRefGoogle Scholar
  62. 62.
    N. Talebi, Optical modes in slab waveguides with magnetoelectric effect (in English). J. Opt. UK 18(5), 055607 (2016).  https://doi.org/10.1088/2040-8978/18/5/055607ADSCrossRefGoogle Scholar
  63. 63.
    P. Schattschneider, Fundamentals of Inelastic Electron Scattering (Springer-Verlag, Wien, Austria, 1986)CrossRefGoogle Scholar
  64. 64.
    P. Li et al., Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).  https://doi.org/10.1038/ncomms8507; https://www.nature.com/articles/ncomms8507#supplementary-information
  65. 65.
    V. Ginsburg, I. Frank, Radiation of a uniformly moving electron due to its transition from one medium into another (in Russian). Zh Eksp Teor Fiz+ 16(1), 15–28 (1946). [Online]. Available: <Go to ISI>://WOS:A1946YB70900002Google Scholar
  66. 66.
    V.L. Ginzburg, Transition radiation and transition scattering (in English). Phys. Scripta T2, 182–191 (1982).  https://doi.org/10.1088/0031-8949/1982/T2a/024ADSCrossRefGoogle Scholar
  67. 67.
    V.L. Ginzburg, V.N. Tsytovich, Several problems of the theory of transition radiation and transition scattering (in English). Phys. Rep. 49(1), 1–89 (1979).  https://doi.org/10.1016/0370-1573(79)90052-8ADSCrossRefGoogle Scholar
  68. 68.
    F.J.G. de Abajo, A. Rivacoba, N. Zabala, N. Yamamoto, Boundary effects in Cherenkov radiation (in English). Phys. Rev. B 69(15), 155420 (2004).  https://doi.org/10.1103/physrevb.69.155420ADSCrossRefGoogle Scholar
  69. 69.
    A. Losquin, M. Kociak, Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states (in English). Acs Photonics 2(11), 1619–1627 (2015).  https://doi.org/10.1021/acsphotonics.5b00416CrossRefGoogle Scholar
  70. 70.
    R.F. Egerton, Electron energy-loss spectroscopy in the TEM (in English). Rep. Prog Phys. 72(1), 016502 (2009).  https://doi.org/10.1088/0034-4885/72/1/016502ADSCrossRefGoogle Scholar
  71. 71.
    L. Wartski, S. Roland, J. Lasalle, M. Bolore, G. Filippi, Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple-scattering measurements (in English). J. Appl. Phys. 46(8), 3644–3653 (1975).  https://doi.org/10.1063/1.322092ADSCrossRefGoogle Scholar
  72. 72.
    R. Vincent, J. Silcox, Dispersion of radiative surface plasmons in aluminum films by electron-scattering (in English). Phys. Rev. Lett. 31(25), 1487–1490 (1973).  https://doi.org/10.1103/PhysRevLett.31.1487ADSCrossRefGoogle Scholar
  73. 73.
    N. Talebi, C. Ozsoy-Keskinbora, H.M. Benia, K. Kern, C.T. Koch, P.A. van Aken, Wedge Dyakonov waves and Dyakonov plasmons in topological insulator Bi2Se3 probed by electron beams. ACS Nano 10(7), 6988–6994 (2016).  https://doi.org/10.1021/acsnano.6b02968CrossRefGoogle Scholar
  74. 74.
    C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, Quantum nanophotonics using hyperbolic metamaterials (in English). J. Opt. UK 14(6), 063001 (2012).  https://doi.org/10.1088/2040-8978/14/6/063001ADSCrossRefGoogle Scholar
  75. 75.
    L. Schachter, A. Ron, Smith-Purcell free-electron laser (in English). Phys. Rev. A 40(2), 876–896 (1989).  https://doi.org/10.1103/PhysRevA.40.876ADSCrossRefGoogle Scholar
  76. 76.
    M.H. Wang, X.G. Xiao, J.Y. Chen, Y.Y. Wei, Study on a novel Smith-Purcell free-electron laser (in English). Phys. Lett. A 345(4–6), 423–427 (2005).  https://doi.org/10.1016/j.physleta.2005.07.020ADSCrossRefGoogle Scholar
  77. 77.
    A.A. Govyadinov et al., Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope (in English). Nat. Commun. 8, 95 (2017).  https://doi.org/10.1038/s41467-017-00056-yADSCrossRefGoogle Scholar
  78. 78.
    B. J. M. Brenny, A. Polman, F. J. García de Abajo, Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface. Phys. Rev. B 94(15), 155412 (2016). [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.94.155412
  79. 79.
    L. Novotny, Strong coupling, energy splitting, and level crossings: a classical perspective (in English). Am. J. Phys. 78(11), 1199–1202 (2010).  https://doi.org/10.1119/1.3471177ADSCrossRefGoogle Scholar
  80. 80.
    S.R.K. Rodriguez, Classical and quantum distinctions between weak and strong coupling (in English). Eur. J. Phys. 37(2), 025802 (2016).  https://doi.org/10.1088/0143-0807/37/2/025802CrossRefGoogle Scholar
  81. 81.
    S.J. Smith, E.M. Purcell, Visible light from localized surface charges moving across a grating (in English). Phys. Rev. 92(4), 1069–1069 (1953).  https://doi.org/10.1103/PhysRev.92.1069ADSCrossRefGoogle Scholar
  82. 82.
    P. Goldsmith, J.V. Jelley, Optical transition radiation from protons entering metal surfaces (in English). Philos. Mag. 4(43), 836–844 (1959).  https://doi.org/10.1080/14786435908238241ADSCrossRefGoogle Scholar
  83. 83.
    J.M. Wachtel, Free-electron lasers using the Smith-Purcell Effect (in English). J. Appl. Phys. 50(1), 49–56 (1979).  https://doi.org/10.1063/1.325642ADSCrossRefGoogle Scholar
  84. 84.
    R.P. Leavitt, D.E. Wortman, C.A. Morrison, Orotron—free-electron laser using the Smith-Purcell Effect (in English). Appl. Phys. Lett. 35(5), 363–365 (1979).  https://doi.org/10.1063/1.91151ADSCrossRefGoogle Scholar
  85. 85.
    J. Urata, M. Goldstein, M.F. Kimmitt, A. Naumov, C. Platt, J.E. Walsh, Superradiant Smith-Purcell emission (in English). Phys. Rev. Lett. 80(3), 516–519 (1998).  https://doi.org/10.1103/PhysRevLett.80.516ADSCrossRefGoogle Scholar
  86. 86.
    G. Adamo et al., Light well: a tunable free-electron light source on a chip (in English). Phys. Rev. Lett. 103(11), 113901 (2009).  https://doi.org/10.1103/physrevlett.103.113901ADSCrossRefGoogle Scholar
  87. 87.
    F.J.G. de Abajo, Smith-Purcell radiation emission in aligned nanoparticles (in English). Phys. Rev. E 61(5), 5743–5752 (2000).  https://doi.org/10.1103/PhysRevE.61.5743ADSCrossRefGoogle Scholar
  88. 88.
    N. Talebi, A directional, ultrafast and integrated few-photon source utilizing the interaction of electron beams and plasmonic nanoantennas. New J. Phys. 16(5), 053021 (2014).  https://doi.org/10.1088/1367-2630/16/5/053021ADSCrossRefGoogle Scholar
  89. 89.
    A. Gover, Y. Pan, Stimulated radiation interaction of a single electron quantum wavepacket. ArXiv e-prints 1702. [Online]. Available: http://adsabs.harvard.edu/abs/2017arXiv170206394G
  90. 90.
    H.L. Andrews, C.H. Boulware, C.A. Brau, J.D. Jarvis, Superradiant emission of Smith-Purcell radiation (in English). Phys. Rev. Spec. Top. Ac. 8(11), 110702 (2005).  https://doi.org/10.1103/physrevstab.8.110702ADSCrossRefGoogle Scholar
  91. 91.
    R.H. Dicke, Coherence in spontaneous radiation processes (in English). Phys. Rev. 93(1), 99–110 (1954).  https://doi.org/10.1103/Physrev.93.99ADSCrossRefzbMATHGoogle Scholar
  92. 92.
    R.M. Phillips, History of the Ubitron (in English). Nucl. Instrum. Meth. A 272(1–2), 1–9 (1988).  https://doi.org/10.1016/0168-9002(88)90185-4ADSCrossRefGoogle Scholar
  93. 93.
    J.M.J. Madey, Stimulated emission of bremsstrahlung in a periodic magnetic field (in English). J. Appl. Phys. 42(5), 1906–1913 (1971).  https://doi.org/10.1063/1.1660466ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Stuttgart Center for Electron Microscopy (StEM)Max Planck Institute for Solid State ResearchStuttgartGermany
  2. 2.Institute of Experimental and Applied PhysicsChristian-Albrechts University in KielKielGermany

Personalised recommendations