Advertisement

Fuzzy Relational of Non-linear Optimization

  • Bing-Yuan CaoEmail author
  • Ji-Hui Yang
  • Xue-Gang Zhou
  • Zeinab Kheiri
  • Faezeh Zahmatkesh
  • Xiao-Peng Yang
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 389)

Abstract

This chapter explores some of the special fuzzy relational non-linear optimization problems, including: quadratic programming with \((\vee ,\cdot )\) fuzzy boundary inequality constraints, and special nonlinear programming with \((\vee ,\wedge )\) fuzzy relational inequality constraint. The former with \((\vee ,\wedge )\) fuzzy relational constraint type and the latter with \((\vee ,\cdot )\) fuzzy relational constraint type can be discussed similarly, here omitted.

References

  1. 1.
    Yang, J.H., Cao, B.Y., Lv, J.: The global optimal solutions for fuzzy relation quadratic programming. Fuzzy Syst. Math. 27(6), 154–161 (2013)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Molai, A.A., Khorram, E.: A modified algorithm for solving the proposed models by Ghodousian and Khorram and Khorram and Ghodousian. Appl. Math. Comput. 190(2), 1161–1167 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Molai, A.A., Khorram, E.:Another modification from two papers of Ghodousian and Khorram and Khorram et al.: Appl. Math. Comput. 197(2), 559–565 (2008)Google Scholar
  4. 4.
    Guo, F.F., Pang, L.P., Meng, D., Xia, Z.Q.: An algorithm for solving optimization problems with fuzzy relational inequality constraints. Inf. Sci. 252, 20–31 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Molai, A.A.: The quadratic programming problem with fuzzy relation inequality constraints. Comput. Ind. Eng. 62, 256–263 (2012)CrossRefGoogle Scholar
  6. 6.
    Wang, P.Z., Zhang, D.Z., Sanchez, E., Lee, E.S.: Latticized linear programming and fuzzy relation inequalities. J. Math. Anal. Appl. 159(1), 72–87 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guan, M.G., Zheng, H.D.: Linear Programming. Shandong Science Technology Press, Jinan (1983)Google Scholar
  8. 8.
    Bazaraa, M., Shetty, C., Sherali, H.: Nonlinear programming: Theory and Algorithms. Wiley, New York (1993)zbMATHGoogle Scholar
  9. 9.
    Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm for convex quadratic integer programming. Math. Program. 135(1), 369–395 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tamalika, C.: Intuitionistic fuzzy set approach for color region extraction. J. Sci. Ind. Res. 69, 426–432 (2010)Google Scholar
  11. 11.
    Hoai An, L.T., Tao, P.D.: A branch and bound method via d.c. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. J. Glob. Optim. 13(2), 171–206 (1998)Google Scholar
  12. 12.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1993)CrossRefGoogle Scholar
  13. 13.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets. Springer, Berlin (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bing-Yuan Cao
    • 1
    • 2
    • 3
    Email author
  • Ji-Hui Yang
    • 4
  • Xue-Gang Zhou
    • 5
  • Zeinab Kheiri
    • 6
  • Faezeh Zahmatkesh
    • 6
  • Xiao-Peng Yang
    • 7
  1. 1.University of FoshanFoshanChina
  2. 2.University of GuangzhouGuangzhouChina
  3. 3.Guangzhou Vocational and Technical University of Science and TechnologyGuangzhouChina
  4. 4.College of ScienceShenyang Agricultural UniversityShenyangChina
  5. 5.School of Financial Mathematics and StatisticsGuangdong University of FinanceGuangzhouChina
  6. 6.Higher Education Mega CenterGuangzhou UniversityGuangzhouChina
  7. 7.Department of Mathematics and StatisticsHanshan Normal UniversityChaozhouChina

Personalised recommendations