Advertisement

A Comprehensive Characterization of Stress Relaxed ZnO Thin Film at Wafer Level

  • Priyanka JoshiEmail author
  • Jitendra Singh
  • V. K. Jain
  • Jamil Akhtar
Chapter
  • 35 Downloads
Part of the Green Energy and Technology book series (GREEN)

Abstract

The chapter goes onto explore the impact of sputtering parameters on structural, optical, and mechanical properties of reactive magnetron sputtered ZnO thin film. Stress relaxed and room temperature deposited ZnO film is highly desirable from fabrication aspects. Oxygen partial pressure is varied from 30 to 60% and c-axis oriented ZnO (002) thin films are prepared at room temperature. The stress varies in −0.06 × 109 to −2.27 × 109 dyne/cm2 range, and compressive in nature. A detailed characterization of ZnO sputtered film is carried out in order to correlate the mechanical, structural, and optical properties of thin film. A theoretical model has been proposed to understand the consequences of oxygen-induced stress in ZnO thin films. It is established that nearly stress-free, single-phase, and highly c-axis oriented ZnO thin film can be deposited using a unique combination of sputter parameters.

Keywords

Zinc oxide Characterization Stress Sputtering Oxygen partial pressure 

Notes

Acknowledgements

Authors are thankful to Director CSIR-CEERI Pilani for continuous support and encouragement. This research work was supported by the 12th Plan network project PSC-0102 (R-Nano). Mr. Arvind Kumar Singh and Mr. Prateek Kothari helped to maintain ZnO sputtering machine.

References

  1. Agarwal DC, Chauhan RS, Amit Kumar D, Kabiraj F, Singh SA, Khan DK, Avasthi JC, Pivin M, Kumar JG, Satyam PV (2006) Synthesis and characterization of ZnO thin film grown by electron beam evaporation. J Appl Phys 99:123105CrossRefGoogle Scholar
  2. Arguello CA, Rousseau DL, Porto SPS (1969) First-order Raman effect in wurtzite-type crystals. Phys Rev 181:1351CrossRefGoogle Scholar
  3. Ashrafi ABMA, Binh NT, Zhang BP, Segawa Y (2004) Strain relaxation and its effect in exciton resonance energies of epitaxial ZnO layers grown on 6H-SiC substrates. Appl Phys Lett 84:2814CrossRefGoogle Scholar
  4. Baraki R, Novak N, Frömling T, Granzow T, Rödel J (2014) Bulk ZnO as piezotronic pressure sensor. App Phys Lett 105:111604CrossRefGoogle Scholar
  5. Conchon F, Renault PO, Goudeau P, Le Bourhis E, Sondergard E, Barthel E, Grachev S, Gouardes E, Rondeau V, Gy R, Lazzari R, Jupille J, Brun N (2010) X-ray diffraction analysis of thermally-induced stress relaxation in ZnO films deposited by magnetron sputtering on (100) Si substrates. Thin Sol Films 518:5237CrossRefGoogle Scholar
  6. Damen TC, Porto PS, Tell B (1966) Raman effect in zinc oxide. Phy Review 142:570CrossRefGoogle Scholar
  7. Drese RJ, Wuttig M (2005) Stress evolution during growth in direct-current-sputtered zinc oxide films at various oxygen flows. J Appl Phys 98:073514CrossRefGoogle Scholar
  8. El Zawawi LK, Abd Alla RA (1999) Electrical and optical phototransformation properties in As doped Se thin films. Thin Sol Films 339:314CrossRefGoogle Scholar
  9. Engelmark F, Fucntes G, Katardjiev IV, Harsta A, Smithand U, Berg S (2000). Synthesis of highly oriented piezoelectric AlN films by reactive sputter deposition. J Vac Sci Technol A 18:1609Google Scholar
  10. Fu YQ, Luo JK, Du XY, Flewitt AJ, Li Y, Markx GH, Walton AJ, Milne WI (2010) Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens Actuators B 143:606CrossRefGoogle Scholar
  11. Gardeniers JGE, Rittersma ZM, Burger GJ (1998) Preferred orientation and piezoelectricity in sputtered ZnO films. J Appl Phys 83:7844CrossRefGoogle Scholar
  12. Ghosh R, Basak D, Fujihara S (2004) Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J Appl Phys 96:2689CrossRefGoogle Scholar
  13. Iborra E, Olivares J, Clement M, Vergara J, Sanz-Hervas A, Sangrador J (2004) Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications. Sens Actuators A 115:501CrossRefGoogle Scholar
  14. Ivanova T, Harizanova A, Koutzarova T, Vertruyen B (2010) Study of ZnO sol–gel films: effect of annealing. Mater Lett 64:1147CrossRefGoogle Scholar
  15. Joshi P, Singh J, Sharma R, Jain VK, Akhtar J (2018) A facile approach to fabricate ZnO thin film based micro-cantilevers. Microelectron Eng 187–188:50–57CrossRefGoogle Scholar
  16. Joshi P, Kumar S, Jain VK, Akhtar J, Singh J (2019) Distributed MEMS mass-sensor based on piezoelectric resonant micro-cantilevers. J Microelectromech Syst.  https://doi.org/10.1109/JMEMS.2019.2908879CrossRefGoogle Scholar
  17. Jou JH, Han M-Y, Cheng D-J (1992) Substrate dependent internal stress in sputtered zinc oxide thin films. J Appl Phys 71:4333CrossRefGoogle Scholar
  18. Karthikeyan B, Pandiyarajan T, Mangalaraj RV (2016) Enhanced blue light emission in transparent ZnO: PVA nanocomposite free standing polymer films. Spectrochim Acta A 152:485CrossRefGoogle Scholar
  19. Krupanidhi SB, Sayer M (1984) Position and pressure effects in RF magnetron reactive sputter deposition of piezoelectric zinc oxide. J Appl Phys 56:3308Google Scholar
  20. Kunj S, Sreenivas K (2016) Residual stress and defect content in magnetron sputtered ZnO films grown on unheated glass substrates. Curr Appl Phys 16:748Google Scholar
  21. Laidani N, Capelletti R, Elena M, Guzman L, Mariotto G, Miotello A, Ossi PM (1993) Spectroscopic characterization of thermally treated carbon-rich Si1–xCx films. Thin Sol Films 223:114CrossRefGoogle Scholar
  22. Li YF, Yao B, Lu YM, Cong CX, Zhang ZZ, Gai YQ, Zheng CJ, Li BH, Wei ZP, Shen DZ, Fan XW, Xiao L, Xu SC, Liu Y (2007) Characterization of biaxial stress and its effect on optical properties of ZnO thin films. Appl Phys Lett 91:021915Google Scholar
  23. Loebl HP, Klee M, Metzmacher C, Brand W, Milsom R, Lok P (2003) Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators. Mat Chem Phys 79:143CrossRefGoogle Scholar
  24. Maniv S, Westwood WD, Colombini E (1982) Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers. J Vac Sci Technol 20:162CrossRefGoogle Scholar
  25. Mass J, Bhattacharya P, Katiyar RS (2003) Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition. Mater Sci Eng B 103:9CrossRefGoogle Scholar
  26. McCluskey MD, Jokela SJ (2009) Defects in ZnO. J Appl Phys 106:071101CrossRefGoogle Scholar
  27. Menon R, Sreenivas K, Gupta V (2008) Influence of stress on the structural and dielectric properties of RF magnetron sputtered zinc oxide thin film. J Appl Phys 103:094903CrossRefGoogle Scholar
  28. Menon R, Gupta V, Tan HH, Sreenivas K, Jagadish C (2011) Origin of stress in radio frequency magnetron sputtered zinc oxide thin films. J Appl Phys 109:064905CrossRefGoogle Scholar
  29. Mohanty BC, Jo YH, Yeon DH, Choi IJ, Choa YS (2009) Stress-induced anomalous shift of optical band gap in ZnO: Al thin films. Appl Phys Lett 95:062103CrossRefGoogle Scholar
  30. Ondo-Ndong R, Ferblantier G, Kalfioui MA, Boyer A, Foucaran A (2003) Properties of RF magnetron sputtered zinc oxide thin films. J Cryst Growth 255:130CrossRefGoogle Scholar
  31. Orikasa Y, Hayashi N, Muranaka S (2008) Effects of oxygen gas pressure on structural, electrical, and thermoelectric properties of (ZnO)3In2O3 thin films deposited by RF magnetron sputtering. J Appl Phys 103:113703CrossRefGoogle Scholar
  32. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301CrossRefGoogle Scholar
  33. Ping Y, Pei L, Li-Qiang Z, Xiao-Liang W, Huan W, Xi-Fu S, Fang-Wei X (2012) Uniaxial stress influence on lattice, band gap and optical properties of n-type ZnO: first-principles calculations. Chin Phys B 21:016803CrossRefGoogle Scholar
  34. Rao TP, Kumar MCS, Angayarkanni SA, Ashok M (2009) Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis. J Alloy Comp 485:413CrossRefGoogle Scholar
  35. Rieger W, Metzger T, Angerer H, Dimitrov R, Ambacher O, Stutzmann M (1996) Influence of substrate-induced biaxial compressive stress on the optical properties of thin GaN films. Appl Phys Lett 68:970CrossRefGoogle Scholar
  36. Shan W, Hauenstein RJ, Fischer AJ, Song JJ, Perry WG, Bremser MD, Davis RF, Goldenberg B (1996) Strain effects on excitonic transitions in GaN: deformation potentials. Phys Rev B 54:13460CrossRefGoogle Scholar
  37. Singh P, Kumar A, Deepak DK (2007b) Growth and characterization of ZnO nanocrystalline thin films and nanopowder via low-cost ultrasonic spray pyrolysis. J Cryst Growth 306:303CrossRefGoogle Scholar
  38. Singh R, Kumar M, Chandra S (2007a) Growth and characterization of high resistivity C-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications. J Mater Sci 42:4675CrossRefGoogle Scholar
  39. Singh Jitendra, Ranwa Sapana, Akhtar Jamil, Kumar Mahesh (2015) Growth of residual stress-free ZnO films on SiO2/Si substrate at room temperature for MEMS devices. AIP Adv 5:067140CrossRefGoogle Scholar
  40. Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc London Ser A 82:172Google Scholar
  41. Sun Y, Miyasato T, Wigmore JK (1999) Characterization of excess carbon in cubic SiC films by infrared absorption. J Appl Phys 85:3377CrossRefGoogle Scholar
  42. Tauc J, Grigo Rovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Physica Status Sol (b) 15:627CrossRefGoogle Scholar
  43. Trodahl HJ, Martin F, Muralt P, Setter N (2006) Raman spectroscopy of sputtered AlN films: E2(high) biaxial strain dependence. Appl Phys Lett 89:061905CrossRefGoogle Scholar
  44. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242CrossRefGoogle Scholar
  45. Wang BB, Shaob RW, Huangc X, Zheng K, Zhu K, Cheng QJ (2016) Structure and photoluminescence properties of graphene nanoflakes grown on zinc oxide films by hot filament chemical vapor deposition. Diam Relat Mater 64:42CrossRefGoogle Scholar
  46. Yang Z, Ye Z, Xu Z, Zhao BH (2009) Effect of the morphology on the optical properties of ZnO nanostructured. Physica E 42:116CrossRefGoogle Scholar
  47. Zhang Y, Jia H, Wang R, Chen C, Luo X, Yua D (2003) Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Appl Phys Lett 83:4631CrossRefGoogle Scholar
  48. Zhao DG, Xu SJ, Xie MH, Tong SY (2003) Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl Phys Lett 83:677CrossRefGoogle Scholar
  49. Zhou B, Rogachev AV, Liu Z, Piliptsou DG, Ji H, Jiang X (2012) Effects of oxygen/argon ratio and annealing on structural and optical properties of ZnO thin films. Appl Surf Sci 258:5759CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Priyanka Joshi
    • 1
    • 2
    Email author
  • Jitendra Singh
    • 1
  • V. K. Jain
    • 2
  • Jamil Akhtar
    • 1
  1. 1.Smart Sensors Area, CSIR-Central Electronics Engineering Research InstitutePilaniIndia
  2. 2.College of Engineering and TechnologyMody UniversityLakshmangarhIndia

Personalised recommendations