Synthesis, Characterization, and Application of Biogenic Nanomaterials: An Overview

  • Shruti Kakkar
  • Bhupendra Harjani
  • Naresh Ledwani
  • Lalita LedwaniEmail author
Part of the Green Energy and Technology book series (GREEN)


Nanotechnology is the most promising and interdisciplinary field of research that has been growing rapidly worldwide in different fields. Nanotechnology commits a sustainable development through its continuous growth toward green chemistry to develop “green nanotechnology”. Green nanotechnology is implementation of green chemistry and green engineering principles in the field of nanotechnology to influence the size of nanoparticles within a nanoscale range to make biogenic nanoparticles. These biogenic nanomaterials can help in solving serious environmental challenges in the area of wastewater treatment, pollutant removal, fatal diseases, climate change, and solar energy conversion. This review provides a brief idea about the current potential applications of nanotechnology into the bio-environmental systems and how this technology can help in the synthesis of biogenic nanoparticle. Biogenic synthesis of nanoparticles is an environmentally friendly approach; it reduces environmental pollutants and conserves natural resources without creating any environmental damages.


Nanotechnology Green nanotechnology Nanomaterials Biogenic Bio-environment 


  1. Ali Mansoori G, Bastami TR, Ahmadpour A, Eshaghi Z (2008) Environmental application of nanotechnology. Ann Rev Nano Res 2(3):439–493CrossRefGoogle Scholar
  2. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319CrossRefGoogle Scholar
  3. Bhavani P, Sujatha ANU, Guntur ANU (2014) Impact of toxic metals leading to environmental pollution. J Chem Pharm Sci 3:70–72Google Scholar
  4. Bogutska KI, Sklyarov YP, Prylutskyy YI (2013) Zinc and zinc nanoparticles: biological role and application in biomedicine. Ukr Bioorg Acta 1:9–16Google Scholar
  5. Cai Z, Ye Z, Yang X, Chang Y, Wang H, Liu Y, Cao A (2011) Encapsulated enhanced green fluorescence protein in silica nanoparticle for cellular imaging. Nanoscale 3(5):1974–1976CrossRefGoogle Scholar
  6. Campbell E, Hasan MT, Pho C, Callaghan K, Akkaraju GR, Naumov AV (2019) Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci Rep 9(1):416CrossRefGoogle Scholar
  7. Carlson C, Hussain SM, Schrand AMK, Braydich-Stolle L, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619Google Scholar
  8. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588CrossRefGoogle Scholar
  9. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12CrossRefGoogle Scholar
  10. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114(10):5161–5214CrossRefGoogle Scholar
  11. Choi Y, Ho NH, Tung CH (2007) Sensing phosphatase activity by using gold nanoparticles. Angew Chem Int Ed 46(5):707–709CrossRefGoogle Scholar
  12. Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R (2018) Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol 46(sup1):1210–1220CrossRefGoogle Scholar
  13. Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171CrossRefGoogle Scholar
  14. Gruère GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37(2):191–198CrossRefGoogle Scholar
  15. Hasan MM, Uddin F, Islam MM, Hasan M, Banik K, Islam MA, Hashid HA (2016) Nanotechnology drug delivery system: tools in advance pharmaceutical and human health care. Int J Biopharm 7(2):90–99Google Scholar
  16. He X, Deng H, Hwang HM (2018) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21CrossRefGoogle Scholar
  17. Hong R, Han G, Fernández JM, Kim BJ, Forbes NS, Rotello VM (2006) Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 128(4):1078–1079CrossRefGoogle Scholar
  18. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331CrossRefGoogle Scholar
  19. Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res 23(14):13754–13788CrossRefGoogle Scholar
  20. Katas H, Moden NZ, Lim CS, Celesistinus T, Chan JY, Ganasan P, Suleman Ismail Abdalla S (2018) Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. J Nanotechnol 1–13Google Scholar
  21. Kefayat A, Ghahremani F, Motaghi H, Mehrgardi MA (2019) Investigation of different targeting decorations effect on the radiosensitizing efficacy of albumin-stabilized gold nanoparticles for breast cancer radiation therapy. Eur J Pharm Sci 130:225–233CrossRefGoogle Scholar
  22. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231CrossRefGoogle Scholar
  23. Khan AK, Rashid R, Murtaza G, Zahra A (2014) Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res 13(7):1169–1177CrossRefGoogle Scholar
  24. Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BR (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym Adv Technol 18(7):562–568CrossRefGoogle Scholar
  25. Liu J, Cheng S, Cao N, Geng C, He C, Shi Q, Xu C, Ni J, DuChanois RM, Elimelech M, Zhao H (2019) Actinia-like multifunctional nanocoagulant for single- step removal of water contaminants. Nat Nanotechnol 14(1):64CrossRefGoogle Scholar
  26. Lusvardi G, Barani C, Giubertoni F, Paganelli G (2017) The synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials 10(10):1208CrossRefGoogle Scholar
  27. Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7(3):e37CrossRefGoogle Scholar
  28. Mazhar T, Shrivastava V, Tomar RS (2017) Green synthesis of bimetallic nanoparticles and its applications: a review. J Pharm Sci Res 9(2):102Google Scholar
  29. Melis A (2012) Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and botryococcene production. Energy Environ Sci 5(2):5531–5539CrossRefGoogle Scholar
  30. Mom TJ, Van Den Bosch FA, Volberda HW (2007) Investigating managers’ exploration and exploitation activities: The influence of top-down, bottom-up, and horizontal knowledge inflows. J Manag Stud 44(6):910–931CrossRefGoogle Scholar
  31. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346CrossRefGoogle Scholar
  32. Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419Google Scholar
  33. Mu Q, Wang H, Zhang M (2017) Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv 14(1):123–136CrossRefGoogle Scholar
  34. Natsuki J, Natsuki T, Hashimoto Y (2015) A review of silver nanoparticles: synthesis methods, properties and applications. Int J Mater Sci Appl 4(5):325–332Google Scholar
  35. Pandey R, Khuller GK (2007) Nanoparticle-based oral drug delivery system for an injectable antibiotic–streptomycin. Chemotherapy 53(6):437–441CrossRefGoogle Scholar
  36. Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:219CrossRefGoogle Scholar
  37. Peng F, Setyawati MI, Tee JK, Ding X, Wang J, Nga ME, Ho HK, Leong DT (2019) Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat Nanotechnol 14(3):279CrossRefGoogle Scholar
  38. Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci: Former Pestic Sci 65(5):540–545CrossRefGoogle Scholar
  39. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers Microbiol 8:1014CrossRefGoogle Scholar
  40. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852CrossRefGoogle Scholar
  41. Rani K, Sridevi V (2017) An overview on role of nanotechnology in green and clean technology. Austin Environ Sci 2(3):1026Google Scholar
  42. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31CrossRefGoogle Scholar
  43. Shukla G, Dixit R, Kumar A, Singh R, Rani A, Kumar P (2017) Nanotechnology: an innovative approach for waste water treatment. In: Applications of Nanotechnology an introduction. Horizon Books 1, p 89Google Scholar
  44. Singh M, Kundu S, Sreekanth V, Motiani RK, Sengupta S, Srivastava A, Bajaj A (2014) Injectable small molecule hydrogel as a potential nanocarrier for localized and sustained in vivo delivery of doxorubicin. Nanoscale 6(21):12849–12855CrossRefGoogle Scholar
  45. Singh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5(1):1–5CrossRefGoogle Scholar
  46. Sotiriou GA, Pratsinis SE (2011) Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Current Opin Chem Eng 1(1):3–10CrossRefGoogle Scholar
  47. Vu VP, Gifford GB, Chen F, Benasutti H, Wang G, Groman EV, Scheinman R, Saba L, Moghimi SM, Simberg D (2019) Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat Nanotechnol 14(1):1CrossRefGoogle Scholar
  48. Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712CrossRefGoogle Scholar
  49. Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Shruti Kakkar
    • 1
  • Bhupendra Harjani
    • 2
  • Naresh Ledwani
    • 3
  • Lalita Ledwani
    • 1
    Email author
  1. 1.Department of ChemistryManipal University JaipurRajasthanIndia
  2. 2.F H Medical CollegeEtmadpurIndia
  3. 3.Bhagwan Mahaveer Cancer Hospital and Research CentreJaipurIndia

Personalised recommendations