Application of Nanotechnology in Diagnosis and Therapeutics

  • R. Mankamna Kumari
  • Ritu Goswami
  • Surendra NimeshEmail author
Part of the Green Energy and Technology book series (GREEN)


The rapid advances in nanotechnology have paved way toward a sustainable path by providing innovative solutions with the issues related to ecosystem as well as human health. In terms of human healthcare and therapy, nanoparticles are expected to contribute to drug delivery and regenerative medicine with its ability to target the source of disease with increased efficiency and minimal side effects. Thus by miniaturizing the drug delivery systems, treatment of several diseases can be made possible. Nanomedicine offers several advantages, such as protection of the payload from degradation in both in vitro and in vivo milieu, facilitation of controlled release of entrapped drugs, prolonged therapeutic effect, and enhancement of targeted delivery along with diminished side effects. Nanotechnology has proved to address some of the problems related to diagnostics, therapeutics, and biomedical aspects. Accordingly, this chapter mainly emphasizes on the evolution of nanoparticles to meet the challenges relevant to healthcare system.


Polymeric nanoparticles Inorganic nanoparticles Therapeutics and diagnostics 


  1. Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183CrossRefGoogle Scholar
  2. Ahn C-H, Chae SY, Bae YH, Kim SW (2002) Biodegradable poly (ethylenimine) for plasmid DNA delivery. J Control Release 80:273–282Google Scholar
  3. Ahn J-H et al (2011) Label-free, single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis. Nano Lett 11:2743–2752Google Scholar
  4. Aigner A, Fischer D, Merdan T, Brus C, Kissel T, Czubayko F (2002) Delivery of unmodified bioactive ribozymes by an RNA-stabilizing polyethylenimine (LMW-PEI) efficiently down-regulates gene expression. Gene Ther 9:1700Google Scholar
  5. Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH (2010) Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target 18:381–388Google Scholar
  6. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16Google Scholar
  7. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 459–461Google Scholar
  8. Anitha A, Maya S, Deepa N, Chennazhi K, Nair S, Jayakumar R (2012) Curcumin-loaded N, O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J Biomater Sci Polym Ed 23:1381–1400Google Scholar
  9. Arnida M, Ray A, Peterson C, Ghandehari H (2011) Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 77:417CrossRefGoogle Scholar
  10. AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290CrossRefGoogle Scholar
  11. Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM (2014) Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech 15:1598–1602CrossRefGoogle Scholar
  12. Bandyopadhyay P, Ma X, Linehan-Stieers C, Kren BT, Steer CJ (1999) Nucleotide exchange in genomic DNA of rat hepatocytes using RNA/DNA oligonucleotides Targeted delivery of liposomes and polyethyleneimine to the asialoglycoprotein receptor. J Biol Chem 274:10163–10172CrossRefGoogle Scholar
  13. Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777CrossRefGoogle Scholar
  14. Bernkop-Schnürch A, Kast C, Guggi D (2003) Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J Control Release 93:95–103CrossRefGoogle Scholar
  15. Bhavsar D, Subramanian K, Sethuraman S, Maheswari Krishnan U (2012) Translational siRNA therapeutics using liposomal carriers: prospects & challenges. Curr Gene Ther 12:315–332CrossRefGoogle Scholar
  16. Biswas AK, Islam MR, Choudhury ZS, Mostafa A, Kadir MF (2014) Nanotechnology based approaches in cancer therapeutics. Adv Nat Sci: Nanosci Nanotechnol 5:043001Google Scholar
  17. Bivas-Benita M et al (2009) Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA–PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 27:4010–4017Google Scholar
  18. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782Google Scholar
  19. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr J-P (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 92:7297–7301CrossRefGoogle Scholar
  20. Boylan NJ, Suk JS, Lai SK, Jelinek R, Boyle MP, Cooper MJ, Hanes J (2012) Highly compacted DNA nanoparticles with low MW PEG coatings: in vitro, ex vivo and in vivo evaluation. J Control Release 157:72–79Google Scholar
  21. Brunner S, Fürtbauer E, Sauer T, Kursa M, Wagner E (2002) Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther 5:80–86CrossRefGoogle Scholar
  22. Brunner S, Sauer T, Carotta Sea, Cotten M, Saltik M, Wagner E 2000 Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther 7:401Google Scholar
  23. Calvo P, Alonso MJ, Vila‐Jato JL, Robinson JR (1996) Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol 48:1147–1152CrossRefGoogle Scholar
  24. Calvo P, Vila-Jato JL, Alonso MaJ (1997) Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm 153:41–50CrossRefGoogle Scholar
  25. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci 103:4930–4934CrossRefGoogle Scholar
  26. Chang JH et al (2006) Characterization and formation of phospholipid nanoemulsion coatings on Mg-modified sericite surface. J Ind Eng Chem 12:635–638Google Scholar
  27. Chen C-C, Tsai T-H, Huang Z-R, Fang J-Y (2010) Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm 74:474–482CrossRefGoogle Scholar
  28. Chen F, Zhang Z-R, Yuan F, Qin X, Wang M, Huang Y (2008a) In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm 349:226–233Google Scholar
  29. Chen J et al (2008b) Galactose-poly (ethylene glycol)-polyethylenimine for improved lung gene transfer. Biochem Biophys Res Commun 375:378–383Google Scholar
  30. Christian DA, Cai S, Garbuzenko OB, Harada T, Zajac AL, Minko T, Discher DE (2009) Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharm 6:1343–1352CrossRefGoogle Scholar
  31. Chumakova OV et al (2008) Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Lett 261:215–225CrossRefGoogle Scholar
  32. Crucho CI, Barros MT (2015) Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery. Polymer 68:41–46CrossRefGoogle Scholar
  33. Dalhaimer P, Bates FS, Discher DE (2003) Single molecule visualization of stable, stiffness-tunable, flow-conforming worm micelles. Macromolecules 36:6873–6877Google Scholar
  34. Dalhaimer P, Bermudez H, Discher D (2004) Biopolymer mimicry with polymeric worm-like micelles: MW-scaled flexibility, locked-in curvature, and coexisting microphases. In: Abstracts of papers of the American chemical society, 2004. Amer chemical soc 1155 16th St, NW, Washington, DC 20036 USA, pp U543–U544Google Scholar
  35. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522CrossRefGoogle Scholar
  36. De La Zerda A et al (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3:557CrossRefGoogle Scholar
  37. Decuzzi P, Godin B, Tanaka T, Lee S-Y, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320–327CrossRefGoogle Scholar
  38. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573Google Scholar
  39. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469CrossRefGoogle Scholar
  40. Dube A, Reynolds JL, Law W-C, Maponga CC, Prasad PN, Morse GD (2014) Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomed Nanotechnol Biol Med 10:831–838CrossRefGoogle Scholar
  41. Elias DR, Poloukhtine A, Popik V, Tsourkas A (2013) Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine: Nanotechnol Biol Med 9:194–201Google Scholar
  42. Elsabahy M, Nazarali A, Foldvari M (2011) Non-viral nucleic acid delivery: key challenges and future directions. Curr Drug Deliv 8:235–244CrossRefGoogle Scholar
  43. Essex S, Navarro G, Sabhachandani P, Chordia A, Trivedi M, Movassaghian S, Torchilin VP (2015) Phospholipid-modified PEI-based nanocarriers for in vivo siRNA therapeutics against multidrug-resistant tumors. Gene Ther 22:257CrossRefGoogle Scholar
  44. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on small medicine: the state of nanomedicine products approved for use or in clinical trials. Nanomedicine: Nanotechnol Biol Med 9:1Google Scholar
  45. Fan S et al (2018) Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv 25:1091–1102Google Scholar
  46. Farlow MR (2001) Pharmacokinetic profiles of current therapies for Alzheimer’s disease: implications for switching to galantamine. Clin Ther 23:A13–A24CrossRefGoogle Scholar
  47. Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571Google Scholar
  48. Gao Y, Liu X-L, Li X-R (2011) Research progress on siRNA delivery with nonviral carriers. Int J Nanomed 6:1017CrossRefGoogle Scholar
  49. Gazori T, Khoshayand MR, Azizi E, Yazdizade P, Nomani A, Haririan I (2009) Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym 77:599–606Google Scholar
  50. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249CrossRefGoogle Scholar
  51. Gonzalez-Pizarro R, Silva-Abreu M, Calpena AC, Egea MA, Espina M, García ML (2018) Development of fluorometholone-loaded PLGA nanoparticles for treatment of inflammatory disorders of anterior and posterior segments of the eye. Int J Pharm 547:338–346CrossRefGoogle Scholar
  52. Goula D, Remy J, Erbacher P, Wasowicz M, Levi G, Abdallah B, Demeneix B (1998) Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 5:712Google Scholar
  53. Grosse S et al (2008) In vivo gene delivery in the mouse lung with lactosylated polyethylenimine, questioning the relevance of in vitro experiments. J Control Release 132:105–112Google Scholar
  54. Guo J, Fisher KA, Darcy R, Cryan JF, O’Driscoll C (2010) Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Mol BioSyst 6:1143–1161Google Scholar
  55. Harris JM, Martin NE, Modi M (2001) Pegylation. Clin Pharmacokinet 40:539–551CrossRefGoogle Scholar
  56. Hayder M et al (2011) A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci Transl Med 3:81ra35–81ra35Google Scholar
  57. Heller DA, Jeng ES, Yeung T-K, Martinez BM, Moll AE, Gastala JB, Strano MS (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311:508–511CrossRefGoogle Scholar
  58. Hoeller S, Sperger A, Valenta C (2009) Lecithin based nanoemulsions: a comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm 370:181–186CrossRefGoogle Scholar
  59. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  60. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapyGoogle Scholar
  61. Hwang H-Y, Kim I-S, Kwon IC, Kim Y-H (2008) Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release 128:23–31CrossRefGoogle Scholar
  62. Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst 28:1–45Google Scholar
  63. Jain V, Gupta A, Pawar VK, Asthana S, Jaiswal AK, Dube A, Chourasia MK (2014) Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl Biochem Biotechnol 174:1309–1330CrossRefGoogle Scholar
  64. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MaJ (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73:255–267CrossRefGoogle Scholar
  65. Jeong YI, Cho CS, Kim SH, Ko KS, Kim SI, Shim YH, Nah JW (2001) Preparation of poly (DL‐lactide‐co‐glycolide) nanoparticles without surfactant. J Appl Polym Sci 80:2228–2236Google Scholar
  66. Jiang G et al. (2008a) Hyaluronic acid–polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolym: Orig Res Biomol 89:635–642Google Scholar
  67. Jiang W, Kim BY, Rutka JT, Chan WC (2008b) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145Google Scholar
  68. Joshi HM, Bhumkar DR, Joshi K, Pokharkar V, Sastry M (2006) Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 22:300–305CrossRefGoogle Scholar
  69. Kabanov A, Gendelman HE (2007) Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci 32:1054–1082CrossRefGoogle Scholar
  70. Kalani M, Yunus R (2012) Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method. Int J Nanomed 7:2165–2172CrossRefGoogle Scholar
  71. Kaminskas LM et al (2012) Doxorubicin-conjugated PEGylated dendrimers show similar tumoricidal activity but lower systemic toxicity when compared to PEGylated liposome and solution formulations in mouse and rat tumor models. Mol Pharm 9:422–432CrossRefGoogle Scholar
  72. Kao HJ, Lo YL, Lin HR, Yu SP (2006) Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J Pharm Pharmacol 58:179–186CrossRefGoogle Scholar
  73. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6:714–729CrossRefGoogle Scholar
  74. Kichler A, Chillon M, Leborgne C, Danos O, Frisch B (2002) Intranasal gene delivery with a polyethylenimine–PEG conjugate. J Control Release 81:379–388Google Scholar
  75. Kleemann E et al (2005) Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG–PEI. J Control Release 109:299–316Google Scholar
  76. Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96:203–209CrossRefGoogle Scholar
  77. Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  78. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75:1–18CrossRefGoogle Scholar
  79. Kutscher HL et al (2010) Enhanced passive pulmonary targeting and retention of PEGylated rigid microparticles in rats. Int J Pharm 402:64–71CrossRefGoogle Scholar
  80. Lamprecht A, Ubrich N, Pérez MH, Lehr C-M, Hoffman M, Maincent P (1999) Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification International. J Pharm 184:97–105Google Scholar
  81. Liebler DC, Guengerich FP (2005) Elucidating mechanisms of drug-induced toxicity. Nat Rev Drug Discov 4:410–420CrossRefGoogle Scholar
  82. Lin H-R, Yu S-P, Kuo C-J, Kao H-J, Lo Y-L, Lin Y-J (2007) Pilocarpine-loaded chitosan-PAA nanosuspension for ophthalmic delivery. J Biomater Sci Polym Ed 18:205–221CrossRefGoogle Scholar
  83. Lin Y-H, Tsai S-C, Lai C-H, Lee C-H, He ZS, Tseng G-C (2013) Genipin-cross-linked fucose–chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials 34:4466–4479Google Scholar
  84. Liu Y, Nguyen J, Steele T, Merkel O, Kissel T (2009) A new synthesis method and degradation of hyper-branched polyethylenimine grafted polycaprolactone block mono-methoxyl poly (ethylene glycol) copolymers (hy-PEI-g-PCL-b-mPEG) as potential DNA delivery vectors. Polymer 50:3895–3904Google Scholar
  85. Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413Google Scholar
  86. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397Google Scholar
  87. Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anti-Cancer Drugs 10:767–776Google Scholar
  88. Masood F, Chen P, Yasin T, Fatima N, Hasan F, Hameed A (2013) Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater Sci Eng C 33:1054–1060Google Scholar
  89. Meng J et al (2008) Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 4:1364–1370CrossRefGoogle Scholar
  90. Mislick KA, Baldeschwieler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci 93:12349–12354CrossRefGoogle Scholar
  91. Muro S et al (2008) Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 16:1450–1458Google Scholar
  92. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166:182–194CrossRefGoogle Scholar
  93. Narayanan S, Binulal N, Mony U, Manzoor K, Nair S, Menon D (2010) Folate targeted polymeric ‘green’ nanotherapy for cancer. Nanotechnology 21:285107Google Scholar
  94. Nguyen H et al (2000) Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther 7:126–138Google Scholar
  95. Onoshima D, Yukawa H, Baba Y (2015) Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 95:2–14CrossRefGoogle Scholar
  96. Onoue S, Yamada S, Chan H-K (2014) Nanodrugs: pharmacokinetics and safety. Int J Nanomed 9:1025–1032Google Scholar
  97. Panchapakesan B, Lu S, Sivakumar K, Taker K, Cesarone G, Wickstrom E (2005) Single-wall carbon nanotube nanobomb agents for killing breast cancer cells. NanoBiotechnology 1:133–139CrossRefGoogle Scholar
  98. Pankhurst QA, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167CrossRefGoogle Scholar
  99. Park JS et al (2006) N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release 115:37–45Google Scholar
  100. Patel J, Garala K, Basu B, Raval M, Dharamsi A (2011) Solubility of aceclofenac in polyamidoamine dendrimer solutions. Int J Pharm Investig 1:135–138CrossRefGoogle Scholar
  101. Patil S, Lalani R, Bhatt P, Vhora I, Patel V, Patel H, Misra A (2018) Hydroxyethyl substituted linear polyethylenimine for safe and efficient delivery of siRNA therapeutics RSC. Advances 8:35461–35473Google Scholar
  102. Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607CrossRefGoogle Scholar
  103. Perez EA (2009) Impact, mechanisms, and novel chemotherapy strategies for overcoming resistance to anthracyclines and taxanes in metastatic breast cancer. Breast Cancer Res Treat 114:195Google Scholar
  104. Plank C, Mechtler K, Szoka FC Jr, Wagner E (1996) Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 7:1437–1446CrossRefGoogle Scholar
  105. Price CF et al (2011) SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS One 6:e24095Google Scholar
  106. Prokop A, Davidson JM (2008) Nanovehicular intracellular delivery systems. J Pharm Sci 97:3518–3590CrossRefGoogle Scholar
  107. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21CrossRefGoogle Scholar
  108. Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V (1985) Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316:817–819CrossRefGoogle Scholar
  109. Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C (2011) Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release 152:208–231CrossRefGoogle Scholar
  110. Sánchez-López E et al (2018) Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. J Nanobiotechnol 16:32CrossRefGoogle Scholar
  111. Schliecker G, Schmidt C, Fuchs S, Kissel T (2003) Characterization of a homologous series of D, L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials 24:3835–3844Google Scholar
  112. Shah M, Naseer MI, Choi MH, Kim MO, Yoon SC (2010) Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: preparation, characterization and in vitro evaluation. Int J Pharm 400:165–175Google Scholar
  113. Siegel SJ, Kahn JB, Metzger K, Winey KI, Werner K, Dan N (2006) Effect of drug type on the degradation rate of PLGA matrices. Eur J Pharm Biopharm 64:287–293CrossRefGoogle Scholar
  114. Song X et al (2008) PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm 350:320–329CrossRefGoogle Scholar
  115. Staples M, Daniel K, Cima MJ, Langer R (2006) Application of micro-and nano-electromechanical devices to drug delivery. Pharm Res 23:847–863CrossRefGoogle Scholar
  116. Sung S-J, Min SH, Cho KY, Lee S, Min Y-J, Yeom YI, Park J-K (2003) Effect of polyethylene glycol on gene delivery of polyethylenimine. Biol Pharm Bull 26:492–500CrossRefGoogle Scholar
  117. Tang G et al (2003) Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials 24:2351–2362CrossRefGoogle Scholar
  118. Tang X, Liang Y, Feng X, Zhang R, Jin X, Sun L (2015) Co-delivery of docetaxel and Poloxamer 235 by PLGA–TPGS nanoparticles for breast cancer treatment. Mater Sci Eng C 49:348–355Google Scholar
  119. Thomas M et al (2012) PEI-complexed LNA antiseeds as miRNA inhibitors. RNA Biol 9:1088–1098CrossRefGoogle Scholar
  120. Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, Baker JR Jr (2011) Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum 63:2671–2680CrossRefGoogle Scholar
  121. Tong WY et al (2018) Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J Nanobiotechnol 16:38Google Scholar
  122. Tortorella S, Karagiannis TC (2014) Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol 247:291–307CrossRefGoogle Scholar
  123. Tosi G et al (2011) Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood–brain barrier. Nanomedicine 6:423–436Google Scholar
  124. Van Butsele K et al (2009) Synthesis and pH-dependent micellization of diblock copolymer mixtures. J Colloid Interface Sci 329:235–243CrossRefGoogle Scholar
  125. Vonarbourg A, Passirani C, Saulnier P, Benoit J-P (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27:4356–4373CrossRefGoogle Scholar
  126. Wang B et al (2010) Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int J Pharm 395:298–308CrossRefGoogle Scholar
  127. Weinstein JS et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30:15–35Google Scholar
  128. Wightman L, Kircheis R, Rössler V, Carotta S, Ruzicka R, Kursa M, Wagner E (2001) Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 3:362–372CrossRefGoogle Scholar
  129. Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045CrossRefGoogle Scholar
  130. Wind N, Holen I (2011) Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int J Breast Cancer, Article ID 967419Google Scholar
  131. Wong KK, Liu X (2010) Silver nanoparticles—the real “silver bullet” in clinical medicine? MedChemComm 1:125–131CrossRefGoogle Scholar
  132. Xiong F, Mi Z, Gu N (2011) Cationic liposomes as gene delivery system: transfection efficiency and new application. Die Pharm-An Int J Pharm Sci 66:158–164Google Scholar
  133. Yaméogo JB et al (2014) Self-assembled biotransesterified cyclodextrins as potential Artemisinin nanocarriers. II: In vitro behavior toward the immune system and in vivo biodistribution assessment of unloaded nanoparticles. Eur J Pharm Biopharm 88:683–694Google Scholar
  134. Yang K, Ma Y-Q (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5:579–583CrossRefGoogle Scholar
  135. Yang X, Zhang Q, Wang Y, Chen H, Zhang H, Gao F, Liu L (2008) Self-aggregated nanoparticles from methoxy poly (ethylene glycol)-modified chitosan: synthesis; characterization; aggregation and methotrexate release in vitro. Colloids Surf B: Biointerfaces 61:125–131Google Scholar
  136. Yen SK, Padmanabhan P, Selvan ST (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3:986–1003Google Scholar
  137. Yoneki N et al (2015) One-pot facile preparation of PEG-modified PLGA nanoparticles: effects of PEG and PLGA on release properties of the particles. Colloids Surf A 469:66–72CrossRefGoogle Scholar
  138. Yoo J-W, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–535Google Scholar
  139. Yuan H, Li J, Bao G, Zhang S (2010) Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys Rev Lett 105:138101CrossRefGoogle Scholar
  140. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424CrossRefGoogle Scholar
  141. Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534Google Scholar
  142. Zhao X, Li H, Lee RJ (2008) Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 5:309–319CrossRefGoogle Scholar
  143. Zhao Z, Li Y, Zhang Y, Chen A-Z, Li G, Zhang J, Xie M-B (2014) Development of silk fibroin modified poly (l-lactide)–poly (ethylene glycol)–poly (l-lactide) nanoparticles in supercritical CO2. Powder Technol 268:118–125Google Scholar
  144. Zhou Z et al (2013) Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials 34:5722–5735CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • R. Mankamna Kumari
    • 1
  • Ritu Goswami
    • 1
  • Surendra Nimesh
    • 1
    Email author
  1. 1.Department of Biotechnology, School of Life SciencesCentral University of RajasthanAjmerIndia

Personalised recommendations