Functionalized Nano-porous Silicon Surfaces for Energy Storage Application

  • Pushpendra KumarEmail author
Part of the Green Energy and Technology book series (GREEN)


Energy storage has been of a topic of curiosity since long for a persistent human activity. Storing power from several intermittent sources has been a great interest of scientific community and grows as the renewable energy industry begins to generate a larger fraction of overall energy consumption. Several renewable sources of energy exist, e.g., wind energy, solar energy, bioenergy, etc., but the problem is to store this energy and again reuse it when needed. For that an electrode is required that has high-energy storage capacity. The electrode that has a very large surface area, long durability, and high conductivity is prerequisite. Electrochemically prepared porous silicon where the physical properties, e.g., pore diameter, porosity, and pore length can be controlled by etching parameter and the functionalized nanostructured surfaces of porous silicon, might be the key material to develop high-energy storage electrodes.


Porous silicon Renewable energy Functionalized nanostructured surfaces Electrochemical etching 


  1. Abramof PG, Beloto AF, Ueta AY, Ferreira NG (2006) X-ray investigation of nanostructured stain-etched porous silicon. J Appl Phys 99:024304CrossRefGoogle Scholar
  2. Bogart TD et al (2014) Lithium ion battery peformance of silicon nanowires with carbon skin. ACS Nano 8:915–922CrossRefGoogle Scholar
  3. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046CrossRefGoogle Scholar
  4. Desplobain S, Gautier G, Semai J, Ventura L, Roy M (2007) Investigations on porous silicon as electrode material in electrochemical capacitors. Phys Status Solidi C 4:2180–2184CrossRefGoogle Scholar
  5. Dian J, Konečný M, Broncová G, Kronďák M, Matolínová I (2013) Electrochemical fabrication and characterization of porous silicon/polypyrrole composites and chemical sensing of organic vapors. Int J Electrochem Sci 8:1559–1572Google Scholar
  6. Foll H, Carstensen J, Frey S (2006) Porous and nanoporous semiconductors and emerging applications. J Nanomater 2006:91635CrossRefGoogle Scholar
  7. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1–974CrossRefGoogle Scholar
  8. Gaur G, Koktysh DS, Weiss SM (2013) Immobilization of quantum dots in nanostructured porous silicon films: characterizations and signal amplification for dual-mode optical biosensing. Adv Funct Mater 23:3712CrossRefGoogle Scholar
  9. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918CrossRefGoogle Scholar
  10. Granitzer P, Rumpf K (2010) Porous silicon-a versatile host material. Materials 3:943–998CrossRefGoogle Scholar
  11. Gupta R et al (2011) Application of energy storage devices in power systems. Int J Eng Sci Technol 3:289–297Google Scholar
  12. Herino R, Bomchil G, Barla K, Bertrand C, Ginoux JL (1987) Porosity and pore size distributions of porous silicon layers. J Electrochem Soc 134, 1994Google Scholar
  13. Ikonen T et al (2017) Electrochemically anodized porous silicon: towards simple and affordable anode material for Li-ion batteries. Sci Rep 7:1–8CrossRefGoogle Scholar
  14. Min-Gi J et al (2016) Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries. Electrochim Acta 209:299–307CrossRefGoogle Scholar
  15. Jha N, Ramesh P, Bekyarova E, Itkis ME, Haddon RC (2012) High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture. Adv Energy Mater 2:438–444CrossRefGoogle Scholar
  16. Kumar P, Huber P (2007) Effect of etching parameter on pore size and porosity of electrochemically formed nanoporous silicon. J Nanomater, Article ID 89718, 4 pGoogle Scholar
  17. Kumar P (2011) Effect of silicon crystal size on photoluminescence appearance in porous silicon. ISRN Nanotechnol, Article ID 163168, 6 pGoogle Scholar
  18. Kumar P et al (2009) Effect of HF concentration on physical and electronic properties of electrochemically formed nano-porous silicon. J Nanomater, Article ID 728957, 7 pGoogle Scholar
  19. Liua H, Wang ZL (2005) Etching silicon wafer without hydrofluoric acid. Appl Phys Lett 87:261913CrossRefGoogle Scholar
  20. Michler P et al (2000) A quantum dot single-photon turnstile device. Science 290:2282CrossRefGoogle Scholar
  21. Oakes L et al (2013) Surface engineered porous silicon for stable, high performance electrochemical supercapacitors. Sci Rep 3:3020CrossRefGoogle Scholar
  22. Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for li-ion batteries. Chem Rev 114:11444–11502CrossRefGoogle Scholar
  23. Palestino AG et al (2007) Fluorescence tuning of confined molecules in porous silicon mirrors. Appl Phys Lett 91:121909CrossRefGoogle Scholar
  24. Pelton M et al (2002) Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys Rev Lett 89:233602CrossRefGoogle Scholar
  25. Rowlands SE, Latham RJ, Schlindwein WS (1999) Supercapacitor devices using porous silicon electrodes. Ionics 5:144–149CrossRefGoogle Scholar
  26. Santori C et al (2001) Triggered single photons from a quantum dot. Phys Rev Lett 86:1502CrossRefGoogle Scholar
  27. Schuth F, Schmidt W (2002) Microporous and mesoporous materials. Adv Mater 14:629CrossRefGoogle Scholar
  28. Smith RL, Collins SD (1992) Porous silicon formation mechanisms. J Appl Phys 71, RIGoogle Scholar
  29. Thissandier F et al (2012) Highly doped silicon nanowires based electrodes for microelectrochemical capacitor applications. Electrochem Commun 25:109–111CrossRefGoogle Scholar
  30. Thissandier F, Pauc N, Brousse T, Gentile P, Sadki S (2013) Micro-ultracapacitors with highly doped silicon nanowires electrodes. Nanoscale Res Lett 8:1–5CrossRefGoogle Scholar
  31. Ulhir A (1956) Electrolytic shaping of germanium and silicon. Bell Syst Tech J 35:333CrossRefGoogle Scholar
  32. Yuan Z et al (2002) Electrically driven single-photon source. Science 295:102CrossRefGoogle Scholar
  33. Zhang XG (2004) Morphology and formation mechanisms of porous silicon. J Electrochem Soc 151:C69–C80CrossRefGoogle Scholar
  34. Zhu Y et al (2012) A seamless three-dimensional carbon nanotube graphene hybrid material. Nat, Commun, p 3Google Scholar
  35. Zhu J et al (2014) The application of graphene in lithium ion battery electrode materials. Springer Plus 3:585CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysicsManipal University JaipurJaipurIndia

Personalised recommendations