Advertisement

Nanoporous Polymeric Membranes for Hydrogen Separation

  • Rajesh Kumar
  • Kamakshi
  • Manoj Kumar
  • Kamlendra AwasthiEmail author
Chapter
  • 64 Downloads
Part of the Green Energy and Technology book series (GREEN)

Abstract

In today’s world, it becomes a necessity to develop an eco-friendly and renewable energy source to overcome the pollution and energy requirement problem. Among all renewable energy sources, hydrogen has been found a more attractive energy carrier due to its high efficiency and cost-effective sustainable energy source. For practical use of H2 as an energy source, it should be separated from a mixture of gases by using hydrogen-selective membranes. In the present chapter, we have reviewed the membrane-based gas separation process. Furthermore, we have summarized the H2 gas separation data based on the different membranes and approaches to prepare hydrogen-selective membranes.

References

  1. 1.
    Al-Mufachi NA, Rees NV, Steinberger-Wilkens R (2015) Hydrogen selective membranes: a review of palladium-based dense metal membranes. Renew Sustain Energy Rev 47:540–551.  https://doi.org/10.1016/j.rser.2015.03.026CrossRefGoogle Scholar
  2. 2.
    Apel PY, Blonskaya IV, Dmitriev SN et al (2006) Structure of polycarbonate track-etch membranes: origin of the “paradoxical” pore shape. J Memb Sci 282:393–400.  https://doi.org/10.1016/j.memsci.2006.05.045CrossRefGoogle Scholar
  3. 3.
    Babu DJ, Lange M, Cherkashinin G et al (2013) Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays. Carbon NY 61:616–623.  https://doi.org/10.1016/j.carbon.2013.05.045CrossRefGoogle Scholar
  4. 4.
    Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121CrossRefGoogle Scholar
  5. 5.
    Bakhtiari O, Sadeghi N (2015) Mixed matrix membranes’ gas separation performance prediction using an analytical model. Chem Eng Res Des 93:710–719.  https://doi.org/10.1016/j.cherd.2014.06.013CrossRefGoogle Scholar
  6. 6.
    Basyooni MA, Shaban M, El Sayed AM (2017) Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci Rep 7:41716CrossRefGoogle Scholar
  7. 7.
    Beard MC, Luther JM, Nozik AJ (2014) The promise and challenge of nanostructured solar cells. Nat Nanotechnol 9:951CrossRefGoogle Scholar
  8. 8.
    Bespalko Y, Sadykov V, Eremeev N et al (2018) Synthesis of tungstates/Ni0.5Cu0.5O nanocomposite materials for hydrogen separation cermet membranes. Compos Struct 202:1263–1274.  https://doi.org/10.1016/j.compstruct.2018.06.004CrossRefGoogle Scholar
  9. 9.
    Bondar VI, Freeman BD, Pinnau I (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers. J Polym Sci Part B Polym Phys 38:2051–2062CrossRefGoogle Scholar
  10. 10.
    Carreon M, Dahe G, Feng J, Venna SR (2016) Mixed matrix membranes for gas separation applications. In: Membranes for gas separations. World Scientific, pp 1–57Google Scholar
  11. 11.
    Castel C, Favre E (2018) Membrane separations and energy efficiency. J Memb Sci 548:345–357.  https://doi.org/10.1016/j.memsci.2017.11.035CrossRefGoogle Scholar
  12. 12.
    Chakarvarti SK (2009) Track-etch membranes enabled nano-/microtechnology: a review. Radiat Meas 44:1085–1092.  https://doi.org/10.1016/j.radmeas.2009.10.028CrossRefGoogle Scholar
  13. 13.
    Chen Y-H, Chen C-Y, Lee S-C (2011) Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. Int J Hydrog Energy 36:6957–6969.  https://doi.org/10.1016/J.IJHYDENE.2011.03.063CrossRefGoogle Scholar
  14. 14.
    Chen Y, Wei Y, Zhuang L et al (2018) Effect of Pt layer on the hydrogen permeation property of La5.5W0.45Nb0.15Mo0.4O11.25-Δmembrane. J Memb Sci 552:61–67.  https://doi.org/10.1016/j.memsci.2018.01.068CrossRefGoogle Scholar
  15. 15.
    Cheng YS, Peña MA, Fierro JL et al (2002) Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from towngas mixture. J Memb Sci 204:329–340.  https://doi.org/10.1016/S0376-7388(02)00059-5CrossRefGoogle Scholar
  16. 16.
    Damle AS, Gangwal SK, Venkataraman VK (1994) Carbon membranes for gas separation: developmental studies. Gas Sep Purif 8:137–147.  https://doi.org/10.1016/0950-4214(94)80024-3CrossRefGoogle Scholar
  17. 17.
    David E, Kopac J (2011) Devlopment of palladium/ceramic membranes for hydrogen separation. Int J Hydrog Energy 36:4498–4506.  https://doi.org/10.1016/j.ijhydene.2010.12.032CrossRefGoogle Scholar
  18. 18.
    De Falco M, Salladini A, Palo E, Iaquaniello G (2011) Reformer and membrane modules (RMM) for methane conversion powered by a nuclear reactor. In: Nuclear power-deployment, operation and sustainability. InTechGoogle Scholar
  19. 19.
    de Lannoy C-F, Soyer E, Wiesner MR (2013) Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J Memb Sci 447:395–402CrossRefGoogle Scholar
  20. 20.
    Denny Kamaruddin H, Koros WJ (1997) Some observations about the application of Fick’s first law for membrane separation of multicomponent mixtures. J Memb Sci 135:147–159.  https://doi.org/10.1016/S0376-7388(97)00142-7CrossRefGoogle Scholar
  21. 21.
    Dicks AL (1996) Hydrogen generation from natural gas for the fuel cell systems of tomorrow. J Power Sources 61:113–124.  https://doi.org/10.1016/S0378-7753(96)02347-6CrossRefGoogle Scholar
  22. 22.
    Dolan MD (2010) Non-Pd BCC alloy membranes for industrial hydrogen separation. J Memb Sci 362:12–28.  https://doi.org/10.1016/j.memsci.2010.06.068CrossRefGoogle Scholar
  23. 23.
    Dolan MD, Dave NC, Ilyushechkin AY et al (2006) Composition and operation of hydrogen-selective amorphous alloy membranes. J Memb Sci 285:30–55.  https://doi.org/10.1016/j.memsci.2006.09.014CrossRefGoogle Scholar
  24. 24.
    Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5:7306–7322CrossRefGoogle Scholar
  25. 25.
    Ebrahimi S, Mollaiy-Berneti S, Asadi H et al (2016) PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: experimental and modeling. Chem Eng Res Des 109:647–656.  https://doi.org/10.1016/j.cherd.2016.03.009CrossRefGoogle Scholar
  26. 26.
    Fasolin S, Barison S, Boldrini S et al (2018) Hydrogen separation by thin vanadium-based multi-layered membranes. Int J Hydrog Energy 43:3235–3243.  https://doi.org/10.1016/j.ijhydene.2017.12.148CrossRefGoogle Scholar
  27. 27.
    Gallucci F, Fernandez E, Corengia P, van Sint AM (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66CrossRefGoogle Scholar
  28. 28.
    Gao H, Lin YS, Li Y, Zhang B (2004) Chemical stability and its improvement of palladium-based metallic membranes. Ind Eng Chem Res 43:6920–6930CrossRefGoogle Scholar
  29. 29.
    Ghasemzadeh K, Sadati Tilebon SM, Basile A (2017) Chapter 10—Silica membranes application for hydrogen separation. In: Basile A, Ghasemzadeh K (eds) Current trends and future developments on (bio-) membranes. Elsevier, pp 243–264Google Scholar
  30. 30.
    Gómez Álvarez-Arenas TE, Apel PY, Orelovitch OL, Muñoz M (2009) New ultrasonic technique for the study of the pore shape of track-etched pores in polymer films. Radiat Meas 44:1114–1118.  https://doi.org/10.1016/j.radmeas.2009.09.002CrossRefGoogle Scholar
  31. 31.
    Haider S, Lindbråthen A, Lie JA, Hägg M-B (2018) Regenerated cellulose based carbon membranes for CO2 separation: durability and aging under miscellaneous environments. J Ind Eng Chem.  https://doi.org/10.1016/j.jiec.2018.10.037CrossRefGoogle Scholar
  32. 32.
    Hamm JBS, Ambrosi A, Griebeler JG et al (2017) Recent advances in the development of supported carbon membranes for gas separation. Int J Hydrog Energy 42:24830–24845.  https://doi.org/10.1016/J.IJHYDENE.2017.08.071CrossRefGoogle Scholar
  33. 33.
    Hashim SS, Somalu MR, Loh KS et al (2018) Perovskite-based proton conducting membranes for hydrogen separation: a review. Int J Hydrog Energy 43:15281–15305.  https://doi.org/10.1016/j.ijhydene.2018.06.045CrossRefGoogle Scholar
  34. 34.
    Hatlevik Ø, Gade SK, Keeling MK et al (2010) Palladium and palladium alloy membranes for hydrogen separation and production: history, fabrication strategies, and current performance. Sep Purif Technol 73:59–64CrossRefGoogle Scholar
  35. 35.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56CrossRefGoogle Scholar
  36. 36.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603CrossRefGoogle Scholar
  37. 37.
    Isfahani SNR, Sedaghat A (2016) A hybrid micro gas turbine and solid state fuel cell power plant with hydrogen production and CO2 capture. Int J Hydrog Energy 41:9490–9499.  https://doi.org/10.1016/j.ijhydene.2016.04.065CrossRefGoogle Scholar
  38. 38.
    Ismail AF, David LIB (2001) A review on the latest development of carbon membranes for gas separation. J Memb Sci 193:1–18.  https://doi.org/10.1016/S0376-7388(01)00510-5CrossRefGoogle Scholar
  39. 39.
    Ismail AF, Rana D, Matsuura T, Foley HC (2011) Carbon-based membranes for separation processes, pp 17–27.  https://doi.org/10.1007/978-0-387-78991-0
  40. 40.
    Javaid A (2005) Membranes for solubility-based gas separation applications. Chem Eng J 112:219–226.  https://doi.org/10.1016/j.cej.2005.07.010CrossRefGoogle Scholar
  41. 41.
    Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon NY 32:1419–1425.  https://doi.org/10.1016/0008-6223(94)90135-XCrossRefGoogle Scholar
  42. 42.
    Jose AJ, Kappen J, Alagar M (2018) 2—Polymeric membranes: classification, preparation, structure physiochemical, and transport mechanisms. In: Thomas S, Balakrishnan P, Sreekala MS (eds) Fundamental biomaterials: polymers. Woodhead Publishing Series in Biomaterials. Woodhead Publishing, pp 21–35Google Scholar
  43. 43.
    Jue ML, Lively RP (2015) Targeted gas separations through polymer membrane functionalization. React Funct Polym 86:88–110.  https://doi.org/10.1016/j.reactfunctpolym.2014.09.002CrossRefGoogle Scholar
  44. 44.
    Khatib SJ, Oyama ST (2013) Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD). Sep Purif Technol 111:20–42.  https://doi.org/10.1016/j.seppur.2013.03.032CrossRefGoogle Scholar
  45. 45.
    Kholmanov I, Kim J, Ou E et al (2015) Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9:11699–11707.  https://doi.org/10.1021/acsnano.5b02917CrossRefGoogle Scholar
  46. 46.
    Kim JH, Ha SY, Lee YM (2001) Gas permeation of poly (amide-6-b-ethylene oxide) copolymer. J Memb Sci 190:179–193CrossRefGoogle Scholar
  47. 47.
    Koohsaryan E, Anbia M (2016) Nanosized and hierarchical zeolites: a short review. Chin J Catal 37:447–467.  https://doi.org/10.1016/S1872-2067(15)61038-5CrossRefGoogle Scholar
  48. 48.
    Kosinov N, Gascon J, Kapteijn F, Hensen EJM (2016) Recent developments in zeolite membranes for gas separation. J Memb Sci 499:65–79.  https://doi.org/10.1016/j.memsci.2015.10.049CrossRefGoogle Scholar
  49. 49.
    Kumar R, Saraswat VK, Kumar M et al (2017) Hydrogen gas separation with controlled selectivity via efficient and cost effective block copolymer coated PET membranes. Int J Hydrog Energy.  https://doi.org/10.1016/j.ijhydene.2017.06.113CrossRefGoogle Scholar
  50. 50.
    Kumar S, Srivastava S, Agrawal S et al (2011) Effect of electric field alignment of MWCNT in PMMA matrix for hydrogen gas purification. AIP Conf Proc 1349:1061–1062.  https://doi.org/10.1063/1.3606228CrossRefGoogle Scholar
  51. 51.
    Kuwahara Y, Morita M, Nagami T, et al (2009) Functionalization of a polymer using nanoparticles immobilized in supercritical carbon dioxide. Jpn J Appl Phys 48:06FF13Google Scholar
  52. 52.
    Li B, Wen H-M, Yu Y et al (2018) Nanospace within metal–organic frameworks for gas storage and separation. Mater Today Nano 2:21–49.  https://doi.org/10.1016/j.mtnano.2018.09.003CrossRefGoogle Scholar
  53. 53.
    Li L, Song C, Jiang D, Wang T (2017) Preparation and enhanced gas separation performance of carbon/carbon nanotubes (C/CNTs) hybrid membranes. Sep Purif Technol 188:73–80.  https://doi.org/10.1016/j.seppur.2017.07.019CrossRefGoogle Scholar
  54. 54.
    Lin R-B, Xiang S, Xing H et al (2019) Exploration of porous metal–organic frameworks for gas separation and purification. Coord Chem Rev 378:87–103.  https://doi.org/10.1016/j.ccr.2017.09.027CrossRefGoogle Scholar
  55. 55.
    Lindemann P, Tsotsalas M, Shishatskiy S et al (2014) Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation. Chem Mater 26:7189–7193CrossRefGoogle Scholar
  56. 56.
    Liu D, Li X, Geng H et al (2018) Development of Nb35Mo5Ti30Ni30alloy membrane for hydrogen separation applications. J Memb Sci 553:171–179.  https://doi.org/10.1016/j.memsci.2018.02.052CrossRefGoogle Scholar
  57. 57.
    Liu J, Wei J (2014) Knudsen diffusion in channels and networks. Chem Eng Sci 111:1–14.  https://doi.org/10.1016/j.ces.2014.01.014CrossRefGoogle Scholar
  58. 58.
    Liu Q, Gupta KM, Xu Q et al (2019) Gas permeation through double-layer graphene oxide membranes: the role of interlayer distance and pore offset. Sep Purif Technol 209:419–425.  https://doi.org/10.1016/j.seppur.2018.07.044CrossRefGoogle Scholar
  59. 59.
    Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367.  https://doi.org/10.1016/j.compositesa.2010.07.003CrossRefGoogle Scholar
  60. 60.
    Ma X, Swaidan R, Teng B et al (2013) Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon NY 62:88–96.  https://doi.org/10.1016/j.carbon.2013.05.057CrossRefGoogle Scholar
  61. 61.
    Malzbender J (2016) Mechanical aspects of ceramic membrane materials. Ceram Int 42:7899–7911.  https://doi.org/10.1016/j.ceramint.2016.02.136CrossRefGoogle Scholar
  62. 62.
    McCool BA, DeSisto WJ (2005) Amino-functionalized silica membranes for enhanced carbon dioxide permeation. Adv Funct Mater 15:1635–1640CrossRefGoogle Scholar
  63. 63.
    Moss TS, Peachey NM, Snow RC, Dye RC (1998) Multilayer metal membranes for hydrogen separation. Int J Hydrog Energy 23:99–106.  https://doi.org/10.1016/S0360-3199(97)00030-XCrossRefGoogle Scholar
  64. 64.
    Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33.  https://doi.org/10.1016/j.desal.2010.11.033CrossRefGoogle Scholar
  65. 65.
    Nwogu NC, Anyanwu EE, Gobina E (2016) An initial investigation of a nano-composite silica ceramic membrane for hydrogen gas separation and purification. Int J Hydrog Energy 41:8228–8235.  https://doi.org/10.1016/j.ijhydene.2015.11.162CrossRefGoogle Scholar
  66. 66.
    Ockwig NW, Nenoff TM (2009) Membranes for hydrogen separation. Chem Rev 110:2573–2574.  https://doi.org/10.1021/cr078108lCrossRefGoogle Scholar
  67. 67.
    Paglieri SN, Way JD (2002) Innovations in palladium membrane research. Sep Purif Methods 31:1–169.  https://doi.org/10.1081/SPM-120006115CrossRefGoogle Scholar
  68. 68.
    Pandey P, Chauhan RS (2001) Membranes for gas separation. Progr Polym Sci 26:853–893.  https://doi.org/10.1016/S0079-6700(01)00009-0CrossRefGoogle Scholar
  69. 69.
    Patel AK, Acharya NK (2018) Metal coated and nanofiller doped polycarbonate membrane for hydrogen transport. Int J Hydrog Energy 43:21675–21682.  https://doi.org/10.1016/j.ijhydene.2018.03.205CrossRefGoogle Scholar
  70. 70.
    Phillip WA, O’Neill B, Rodwogin M et al (2010) Self-assembled block copolymer thin films as water filtration membranes. ACS Appl Mater Interfaces 2:847–853CrossRefGoogle Scholar
  71. 71.
    Álvarez-Fernández R, Beltrán Cilleruelo F, IVM (2016) A new approach to battery powered electric vehicles: a hydrogen fuel-cell range extender system. Int J Hydrog Energy 41:4808–4819Google Scholar
  72. 72.
    Rahimpour MR, Samimi F, Babapoor A et al (2017) Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem Eng Process Process Intensif 121:24–49.  https://doi.org/10.1016/j.cep.2017.07.021CrossRefGoogle Scholar
  73. 73.
    Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Memb Sci 62:165–185.  https://doi.org/10.1016/0376-7388(91)80060-JCrossRefGoogle Scholar
  74. 74.
    Sadilov IS, Petukhov DI, Eliseev AA (2019) Enhancing gas separation efficiency by surface functionalization of nanoporous membranes. Sep Purif Technol.  https://doi.org/10.1016/j.seppur.2019.03.078CrossRefGoogle Scholar
  75. 75.
    Sadykov VA, Krasnov AV, Fedorova YE et al (2018) Novel nanocomposite materials for oxygen and hydrogen separation membranes. Int J Hydrog Energy.  https://doi.org/10.1016/j.ijhydene.2018.02.182CrossRefGoogle Scholar
  76. 76.
    Sanders DF, Smith ZP, Guo R et al (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer (Guildf) 54:4729–4761.  https://doi.org/10.1016/J.POLYMER.2013.05.075CrossRefGoogle Scholar
  77. 77.
    Sanip SM, Ismail AF, Goh PS et al (2011) Gas separation properties of functionalized carbon nanotubes mixed matrix membranes. Sep Purif Technol 78:208–213.  https://doi.org/10.1016/J.SEPPUR.2011.02.003CrossRefGoogle Scholar
  78. 78.
    Segalman RA (2005) Patterning with block copolymer thin films. Mater Sci Eng R Rep 48:191–226.  https://doi.org/10.1016/j.mser.2004.12.003CrossRefGoogle Scholar
  79. 79.
    Sharma A, Kumar S, Tripathi B et al (2009) Aligned CNT/Polymer nanocomposite membranes for hydrogen separation. Int J Hydrog Energy 34:3977–3982.  https://doi.org/10.1016/J.IJHYDENE.2009.02.068CrossRefGoogle Scholar
  80. 80.
    Sharma A, Tripathi B, Vijay YK (2010) Dramatic Improvement in properties of magnetically aligned CNT/polymer nanocomposites. J Memb Sci 361:89–95.  https://doi.org/10.1016/j.memsci.2010.06.005CrossRefGoogle Scholar
  81. 81.
    Sharma A, Vijay YK (2012) Effect of electric field variation in alignment of SWNT/PC nanocomposites. Int J Hydrog Energy 37:3945–3948.  https://doi.org/10.1016/j.ijhydene.2011.03.166CrossRefGoogle Scholar
  82. 82.
    Shi Z, Wu S, Szpunar JA, Roshd M (2006) An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. J Memb Sci 280:705–711CrossRefGoogle Scholar
  83. 83.
    Shimekit B, Mukhtar H, Murugesan T (2011) Prediction of the relative permeability of gases in mixed matrix membranes. J Memb Sci 373:152–159.  https://doi.org/10.1016/j.memsci.2011.02.038CrossRefGoogle Scholar
  84. 84.
    Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242CrossRefGoogle Scholar
  85. 85.
    Song N, Gao X, Ma Z et al (2018) A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalination 437:59–72.  https://doi.org/10.1016/J.DESAL.2018.02.024CrossRefGoogle Scholar
  86. 86.
    Sridhar S, Bee S, Bhargava SK (2014) Membrane-based gas separation : principle, applications and future potential. 1–25Google Scholar
  87. 87.
    Sudowe R, Vater W, Ensinger W et al (1999) Basic research on nuclear track microfilters for gas separation. Radiat Meas 31:691–696.  https://doi.org/10.1016/S1350-4487(99)00179-1CrossRefGoogle Scholar
  88. 88.
    Sun M, Li J (2018) Graphene oxide membranes: functional structures, preparation and environmental applications. Nano Today 20:121–137.  https://doi.org/10.1016/j.nantod.2018.04.007CrossRefGoogle Scholar
  89. 89.
    Swain SS, Unnikrishnan L, Mohanty S, Nayak SK (2017) Carbon nanotubes as potential candidate for separation of H2CO2 gas pairs. Int J Hydrog Energy 42:29283–29299.  https://doi.org/10.1016/j.ijhydene.2017.09.152CrossRefGoogle Scholar
  90. 90.
    Tao Y, Xue Q, Liu Z et al (2014) Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. ACS Appl Mater Interfaces 6:8048–8058.  https://doi.org/10.1021/am4058887CrossRefGoogle Scholar
  91. 91.
    Tersoff J, Ruoff RS (1994) Structural properties of a carbon-nanotube crystal. Phys Rev Lett 73:676–679.  https://doi.org/10.1103/physrevlett.73.676
  92. 92.
    Thakkar H, Lawson S, Rownaghi AA, Rezaei F (2018) Development of 3D-printed polymer-zeolite composite monoliths for gas separation. Chem Eng J 348:109–116.  https://doi.org/10.1016/j.cej.2018.04.178CrossRefGoogle Scholar
  93. 93.
    Thomas C, James BD, Lomax FD, Kuhn IF (2000) Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline? Int J Hydrog Energy 25:551–567.  https://doi.org/10.1016/S0360-3199(99)00064-6CrossRefGoogle Scholar
  94. 94.
    Urch H, Geismann C, Ulbricht M, Epple M (2006) Deposition of functionalized calcium phosphate nanoparticles on functionalized polymer surfaces. Mater und Werkstofftechnik Entwicklung, Fert Prüfung, Eig und Anwendungen Tech Werkstoffe 37:422–425Google Scholar
  95. 95.
    van Zoelen W, ten Brinke G (2009) Thin films of complexed block copolymers. Soft Matter 5:1568–1582CrossRefGoogle Scholar
  96. 96.
    Verweij H (2003) Ceramic membranes: morphology and transport. J Mater Sci 38:4677–4695CrossRefGoogle Scholar
  97. 97.
    Wang M, Wang Z, Zhao S et al (2017) Recent advances on mixed matrix membranes for CO2 separation. Chin J Chem Eng 25:1581–1597.  https://doi.org/10.1016/j.cjche.2017.07.006CrossRefGoogle Scholar
  98. 98.
    Wang Y, Yang Q, Zhong C, Li J (2017) Theoretical investigation of gas separation in functionalized nanoporous graphene membranes. Appl Surf Sci 407:532–539.  https://doi.org/10.1016/j.apsusc.2017.02.253CrossRefGoogle Scholar
  99. 99.
    Ward TL, Dao T (1999) Model of hydrogen permeation behavior in palladium membranes. J Memb Sci 153:211–231CrossRefGoogle Scholar
  100. 100.
    Wee S-L, Tye C-T, Bhatia S (2008) Membrane separation process—pervaporation through zeolite membrane. Sep Purif Technol 63:500–516.  https://doi.org/10.1016/j.seppur.2008.07.010CrossRefGoogle Scholar
  101. 101.
    Wei S, Zhou S, Wu Z et al (2018) Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification. Appl Surf Sci 441:631–638.  https://doi.org/10.1016/j.apsusc.2018.02.111CrossRefGoogle Scholar
  102. 102.
    Weng T-H, Tseng H-H, Wey M-Y (2009) Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int J Hydrog Energy 34:8707–8715CrossRefGoogle Scholar
  103. 103.
    Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Memb Sci 107:1–21.  https://doi.org/10.1016/0376-7388(95)00102-ICrossRefGoogle Scholar
  104. 104.
    Wijmans JGH, Baker RW (2006) The solution-diffusion model: a unified approach to membrane permeation. Materials science of membranes for gas and vapor separation. Wiley, Chichester, UK, pp 159–189CrossRefGoogle Scholar
  105. 105.
    Yamazaki IM, Paterson R, Geraldo LP (1996) A new generation of track etched membranes for microfiltration and ultrafiltration. Part I: Preparation and characterisation. J Memb Sci 118:239–245.  https://doi.org/10.1016/0376-7388(96)00098-1CrossRefGoogle Scholar
  106. 106.
    Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45:3298–3311.  https://doi.org/10.1021/ma300213bCrossRefGoogle Scholar
  107. 107.
    Yilanci A, Dincer I, Ozturk HK (2009) A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog Energy Combust Sci 35:231–244.  https://doi.org/10.1016/J.PECS.2008.07.004CrossRefGoogle Scholar
  108. 108.
    Yu S, Welp U, Hua LZ et al (2005) Fabrication of palladium nanotubes and their application in hydrogen sensing. Chem Mater 17:3445–3450.  https://doi.org/10.1021/cm048191iCrossRefGoogle Scholar
  109. 109.
    Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831CrossRefGoogle Scholar
  110. 110.
    Zhang J, Xin Q, Li X et al (2019) Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. J Memb Sci 570–571:343–354.  https://doi.org/10.1016/j.memsci.2018.10.075CrossRefGoogle Scholar
  111. 111.
    Zhang W, Gaggl M, Gluth GJG, Behrendt F (2014) Gas separation using porous cement membrane. J Environ Sci 26:140–146.  https://doi.org/10.1016/S1001-0742(13)60389-7CrossRefGoogle Scholar
  112. 112.
    Zito PF, Caravella A, Brunetti A et al (2017) Knudsen and surface diffusion competing for gas permeation inside silicalite membranes. J Memb Sci 523:456–469CrossRefGoogle Scholar
  113. 113.
    Zito PF, Caravella A, Brunetti A et al (2018) Discrimination among gas translation, surface and Knudsen diffusion in permeation through zeolite membranes. J Memb Sci 564:166–173.  https://doi.org/10.1016/j.memsci.2018.07.023CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rajesh Kumar
    • 1
  • Kamakshi
    • 2
  • Manoj Kumar
    • 1
  • Kamlendra Awasthi
    • 1
    Email author
  1. 1.Department of PhysicsMalaviya National Institute of TechnologyJaipurIndia
  2. 2.Department of PhysicsBanasthali VidyapithVanasthaliIndia

Personalised recommendations