Nanoporous Polymeric Membranes for Hydrogen Separation

  • Rajesh Kumar
  • Kamakshi
  • Manoj Kumar
  • Kamlendra AwasthiEmail author
Part of the Green Energy and Technology book series (GREEN)


In today’s world, it becomes a necessity to develop an eco-friendly and renewable energy source to overcome the pollution and energy requirement problem. Among all renewable energy sources, hydrogen has been found a more attractive energy carrier due to its high efficiency and cost-effective sustainable energy source. For practical use of H2 as an energy source, it should be separated from a mixture of gases by using hydrogen-selective membranes. In the present chapter, we have reviewed the membrane-based gas separation process. Furthermore, we have summarized the H2 gas separation data based on the different membranes and approaches to prepare hydrogen-selective membranes.


  1. 1.
    Al-Mufachi NA, Rees NV, Steinberger-Wilkens R (2015) Hydrogen selective membranes: a review of palladium-based dense metal membranes. Renew Sustain Energy Rev 47:540–551. Scholar
  2. 2.
    Apel PY, Blonskaya IV, Dmitriev SN et al (2006) Structure of polycarbonate track-etch membranes: origin of the “paradoxical” pore shape. J Memb Sci 282:393–400. Scholar
  3. 3.
    Babu DJ, Lange M, Cherkashinin G et al (2013) Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays. Carbon NY 61:616–623. Scholar
  4. 4.
    Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121CrossRefGoogle Scholar
  5. 5.
    Bakhtiari O, Sadeghi N (2015) Mixed matrix membranes’ gas separation performance prediction using an analytical model. Chem Eng Res Des 93:710–719. Scholar
  6. 6.
    Basyooni MA, Shaban M, El Sayed AM (2017) Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci Rep 7:41716CrossRefGoogle Scholar
  7. 7.
    Beard MC, Luther JM, Nozik AJ (2014) The promise and challenge of nanostructured solar cells. Nat Nanotechnol 9:951CrossRefGoogle Scholar
  8. 8.
    Bespalko Y, Sadykov V, Eremeev N et al (2018) Synthesis of tungstates/Ni0.5Cu0.5O nanocomposite materials for hydrogen separation cermet membranes. Compos Struct 202:1263–1274. Scholar
  9. 9.
    Bondar VI, Freeman BD, Pinnau I (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers. J Polym Sci Part B Polym Phys 38:2051–2062CrossRefGoogle Scholar
  10. 10.
    Carreon M, Dahe G, Feng J, Venna SR (2016) Mixed matrix membranes for gas separation applications. In: Membranes for gas separations. World Scientific, pp 1–57Google Scholar
  11. 11.
    Castel C, Favre E (2018) Membrane separations and energy efficiency. J Memb Sci 548:345–357. Scholar
  12. 12.
    Chakarvarti SK (2009) Track-etch membranes enabled nano-/microtechnology: a review. Radiat Meas 44:1085–1092. Scholar
  13. 13.
    Chen Y-H, Chen C-Y, Lee S-C (2011) Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. Int J Hydrog Energy 36:6957–6969. Scholar
  14. 14.
    Chen Y, Wei Y, Zhuang L et al (2018) Effect of Pt layer on the hydrogen permeation property of La5.5W0.45Nb0.15Mo0.4O11.25-Δmembrane. J Memb Sci 552:61–67. Scholar
  15. 15.
    Cheng YS, Peña MA, Fierro JL et al (2002) Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from towngas mixture. J Memb Sci 204:329–340. Scholar
  16. 16.
    Damle AS, Gangwal SK, Venkataraman VK (1994) Carbon membranes for gas separation: developmental studies. Gas Sep Purif 8:137–147. Scholar
  17. 17.
    David E, Kopac J (2011) Devlopment of palladium/ceramic membranes for hydrogen separation. Int J Hydrog Energy 36:4498–4506. Scholar
  18. 18.
    De Falco M, Salladini A, Palo E, Iaquaniello G (2011) Reformer and membrane modules (RMM) for methane conversion powered by a nuclear reactor. In: Nuclear power-deployment, operation and sustainability. InTechGoogle Scholar
  19. 19.
    de Lannoy C-F, Soyer E, Wiesner MR (2013) Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J Memb Sci 447:395–402CrossRefGoogle Scholar
  20. 20.
    Denny Kamaruddin H, Koros WJ (1997) Some observations about the application of Fick’s first law for membrane separation of multicomponent mixtures. J Memb Sci 135:147–159. Scholar
  21. 21.
    Dicks AL (1996) Hydrogen generation from natural gas for the fuel cell systems of tomorrow. J Power Sources 61:113–124. Scholar
  22. 22.
    Dolan MD (2010) Non-Pd BCC alloy membranes for industrial hydrogen separation. J Memb Sci 362:12–28. Scholar
  23. 23.
    Dolan MD, Dave NC, Ilyushechkin AY et al (2006) Composition and operation of hydrogen-selective amorphous alloy membranes. J Memb Sci 285:30–55. Scholar
  24. 24.
    Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5:7306–7322CrossRefGoogle Scholar
  25. 25.
    Ebrahimi S, Mollaiy-Berneti S, Asadi H et al (2016) PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: experimental and modeling. Chem Eng Res Des 109:647–656. Scholar
  26. 26.
    Fasolin S, Barison S, Boldrini S et al (2018) Hydrogen separation by thin vanadium-based multi-layered membranes. Int J Hydrog Energy 43:3235–3243. Scholar
  27. 27.
    Gallucci F, Fernandez E, Corengia P, van Sint AM (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66CrossRefGoogle Scholar
  28. 28.
    Gao H, Lin YS, Li Y, Zhang B (2004) Chemical stability and its improvement of palladium-based metallic membranes. Ind Eng Chem Res 43:6920–6930CrossRefGoogle Scholar
  29. 29.
    Ghasemzadeh K, Sadati Tilebon SM, Basile A (2017) Chapter 10—Silica membranes application for hydrogen separation. In: Basile A, Ghasemzadeh K (eds) Current trends and future developments on (bio-) membranes. Elsevier, pp 243–264Google Scholar
  30. 30.
    Gómez Álvarez-Arenas TE, Apel PY, Orelovitch OL, Muñoz M (2009) New ultrasonic technique for the study of the pore shape of track-etched pores in polymer films. Radiat Meas 44:1114–1118. Scholar
  31. 31.
    Haider S, Lindbråthen A, Lie JA, Hägg M-B (2018) Regenerated cellulose based carbon membranes for CO2 separation: durability and aging under miscellaneous environments. J Ind Eng Chem. Scholar
  32. 32.
    Hamm JBS, Ambrosi A, Griebeler JG et al (2017) Recent advances in the development of supported carbon membranes for gas separation. Int J Hydrog Energy 42:24830–24845. Scholar
  33. 33.
    Hashim SS, Somalu MR, Loh KS et al (2018) Perovskite-based proton conducting membranes for hydrogen separation: a review. Int J Hydrog Energy 43:15281–15305. Scholar
  34. 34.
    Hatlevik Ø, Gade SK, Keeling MK et al (2010) Palladium and palladium alloy membranes for hydrogen separation and production: history, fabrication strategies, and current performance. Sep Purif Technol 73:59–64CrossRefGoogle Scholar
  35. 35.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56CrossRefGoogle Scholar
  36. 36.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603CrossRefGoogle Scholar
  37. 37.
    Isfahani SNR, Sedaghat A (2016) A hybrid micro gas turbine and solid state fuel cell power plant with hydrogen production and CO2 capture. Int J Hydrog Energy 41:9490–9499. Scholar
  38. 38.
    Ismail AF, David LIB (2001) A review on the latest development of carbon membranes for gas separation. J Memb Sci 193:1–18. Scholar
  39. 39.
    Ismail AF, Rana D, Matsuura T, Foley HC (2011) Carbon-based membranes for separation processes, pp 17–27.
  40. 40.
    Javaid A (2005) Membranes for solubility-based gas separation applications. Chem Eng J 112:219–226. Scholar
  41. 41.
    Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon NY 32:1419–1425. Scholar
  42. 42.
    Jose AJ, Kappen J, Alagar M (2018) 2—Polymeric membranes: classification, preparation, structure physiochemical, and transport mechanisms. In: Thomas S, Balakrishnan P, Sreekala MS (eds) Fundamental biomaterials: polymers. Woodhead Publishing Series in Biomaterials. Woodhead Publishing, pp 21–35Google Scholar
  43. 43.
    Jue ML, Lively RP (2015) Targeted gas separations through polymer membrane functionalization. React Funct Polym 86:88–110. Scholar
  44. 44.
    Khatib SJ, Oyama ST (2013) Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD). Sep Purif Technol 111:20–42. Scholar
  45. 45.
    Kholmanov I, Kim J, Ou E et al (2015) Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9:11699–11707. Scholar
  46. 46.
    Kim JH, Ha SY, Lee YM (2001) Gas permeation of poly (amide-6-b-ethylene oxide) copolymer. J Memb Sci 190:179–193CrossRefGoogle Scholar
  47. 47.
    Koohsaryan E, Anbia M (2016) Nanosized and hierarchical zeolites: a short review. Chin J Catal 37:447–467. Scholar
  48. 48.
    Kosinov N, Gascon J, Kapteijn F, Hensen EJM (2016) Recent developments in zeolite membranes for gas separation. J Memb Sci 499:65–79. Scholar
  49. 49.
    Kumar R, Saraswat VK, Kumar M et al (2017) Hydrogen gas separation with controlled selectivity via efficient and cost effective block copolymer coated PET membranes. Int J Hydrog Energy. Scholar
  50. 50.
    Kumar S, Srivastava S, Agrawal S et al (2011) Effect of electric field alignment of MWCNT in PMMA matrix for hydrogen gas purification. AIP Conf Proc 1349:1061–1062. Scholar
  51. 51.
    Kuwahara Y, Morita M, Nagami T, et al (2009) Functionalization of a polymer using nanoparticles immobilized in supercritical carbon dioxide. Jpn J Appl Phys 48:06FF13Google Scholar
  52. 52.
    Li B, Wen H-M, Yu Y et al (2018) Nanospace within metal–organic frameworks for gas storage and separation. Mater Today Nano 2:21–49. Scholar
  53. 53.
    Li L, Song C, Jiang D, Wang T (2017) Preparation and enhanced gas separation performance of carbon/carbon nanotubes (C/CNTs) hybrid membranes. Sep Purif Technol 188:73–80. Scholar
  54. 54.
    Lin R-B, Xiang S, Xing H et al (2019) Exploration of porous metal–organic frameworks for gas separation and purification. Coord Chem Rev 378:87–103. Scholar
  55. 55.
    Lindemann P, Tsotsalas M, Shishatskiy S et al (2014) Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation. Chem Mater 26:7189–7193CrossRefGoogle Scholar
  56. 56.
    Liu D, Li X, Geng H et al (2018) Development of Nb35Mo5Ti30Ni30alloy membrane for hydrogen separation applications. J Memb Sci 553:171–179. Scholar
  57. 57.
    Liu J, Wei J (2014) Knudsen diffusion in channels and networks. Chem Eng Sci 111:1–14. Scholar
  58. 58.
    Liu Q, Gupta KM, Xu Q et al (2019) Gas permeation through double-layer graphene oxide membranes: the role of interlayer distance and pore offset. Sep Purif Technol 209:419–425. Scholar
  59. 59.
    Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367. Scholar
  60. 60.
    Ma X, Swaidan R, Teng B et al (2013) Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon NY 62:88–96. Scholar
  61. 61.
    Malzbender J (2016) Mechanical aspects of ceramic membrane materials. Ceram Int 42:7899–7911. Scholar
  62. 62.
    McCool BA, DeSisto WJ (2005) Amino-functionalized silica membranes for enhanced carbon dioxide permeation. Adv Funct Mater 15:1635–1640CrossRefGoogle Scholar
  63. 63.
    Moss TS, Peachey NM, Snow RC, Dye RC (1998) Multilayer metal membranes for hydrogen separation. Int J Hydrog Energy 23:99–106. Scholar
  64. 64.
    Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33. Scholar
  65. 65.
    Nwogu NC, Anyanwu EE, Gobina E (2016) An initial investigation of a nano-composite silica ceramic membrane for hydrogen gas separation and purification. Int J Hydrog Energy 41:8228–8235. Scholar
  66. 66.
    Ockwig NW, Nenoff TM (2009) Membranes for hydrogen separation. Chem Rev 110:2573–2574. Scholar
  67. 67.
    Paglieri SN, Way JD (2002) Innovations in palladium membrane research. Sep Purif Methods 31:1–169. Scholar
  68. 68.
    Pandey P, Chauhan RS (2001) Membranes for gas separation. Progr Polym Sci 26:853–893. Scholar
  69. 69.
    Patel AK, Acharya NK (2018) Metal coated and nanofiller doped polycarbonate membrane for hydrogen transport. Int J Hydrog Energy 43:21675–21682. Scholar
  70. 70.
    Phillip WA, O’Neill B, Rodwogin M et al (2010) Self-assembled block copolymer thin films as water filtration membranes. ACS Appl Mater Interfaces 2:847–853CrossRefGoogle Scholar
  71. 71.
    Álvarez-Fernández R, Beltrán Cilleruelo F, IVM (2016) A new approach to battery powered electric vehicles: a hydrogen fuel-cell range extender system. Int J Hydrog Energy 41:4808–4819Google Scholar
  72. 72.
    Rahimpour MR, Samimi F, Babapoor A et al (2017) Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem Eng Process Process Intensif 121:24–49. Scholar
  73. 73.
    Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Memb Sci 62:165–185. Scholar
  74. 74.
    Sadilov IS, Petukhov DI, Eliseev AA (2019) Enhancing gas separation efficiency by surface functionalization of nanoporous membranes. Sep Purif Technol. Scholar
  75. 75.
    Sadykov VA, Krasnov AV, Fedorova YE et al (2018) Novel nanocomposite materials for oxygen and hydrogen separation membranes. Int J Hydrog Energy. Scholar
  76. 76.
    Sanders DF, Smith ZP, Guo R et al (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer (Guildf) 54:4729–4761. Scholar
  77. 77.
    Sanip SM, Ismail AF, Goh PS et al (2011) Gas separation properties of functionalized carbon nanotubes mixed matrix membranes. Sep Purif Technol 78:208–213. Scholar
  78. 78.
    Segalman RA (2005) Patterning with block copolymer thin films. Mater Sci Eng R Rep 48:191–226. Scholar
  79. 79.
    Sharma A, Kumar S, Tripathi B et al (2009) Aligned CNT/Polymer nanocomposite membranes for hydrogen separation. Int J Hydrog Energy 34:3977–3982. Scholar
  80. 80.
    Sharma A, Tripathi B, Vijay YK (2010) Dramatic Improvement in properties of magnetically aligned CNT/polymer nanocomposites. J Memb Sci 361:89–95. Scholar
  81. 81.
    Sharma A, Vijay YK (2012) Effect of electric field variation in alignment of SWNT/PC nanocomposites. Int J Hydrog Energy 37:3945–3948. Scholar
  82. 82.
    Shi Z, Wu S, Szpunar JA, Roshd M (2006) An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. J Memb Sci 280:705–711CrossRefGoogle Scholar
  83. 83.
    Shimekit B, Mukhtar H, Murugesan T (2011) Prediction of the relative permeability of gases in mixed matrix membranes. J Memb Sci 373:152–159. Scholar
  84. 84.
    Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242CrossRefGoogle Scholar
  85. 85.
    Song N, Gao X, Ma Z et al (2018) A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalination 437:59–72. Scholar
  86. 86.
    Sridhar S, Bee S, Bhargava SK (2014) Membrane-based gas separation : principle, applications and future potential. 1–25Google Scholar
  87. 87.
    Sudowe R, Vater W, Ensinger W et al (1999) Basic research on nuclear track microfilters for gas separation. Radiat Meas 31:691–696. Scholar
  88. 88.
    Sun M, Li J (2018) Graphene oxide membranes: functional structures, preparation and environmental applications. Nano Today 20:121–137. Scholar
  89. 89.
    Swain SS, Unnikrishnan L, Mohanty S, Nayak SK (2017) Carbon nanotubes as potential candidate for separation of H2CO2 gas pairs. Int J Hydrog Energy 42:29283–29299. Scholar
  90. 90.
    Tao Y, Xue Q, Liu Z et al (2014) Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. ACS Appl Mater Interfaces 6:8048–8058. Scholar
  91. 91.
    Tersoff J, Ruoff RS (1994) Structural properties of a carbon-nanotube crystal. Phys Rev Lett 73:676–679.
  92. 92.
    Thakkar H, Lawson S, Rownaghi AA, Rezaei F (2018) Development of 3D-printed polymer-zeolite composite monoliths for gas separation. Chem Eng J 348:109–116. Scholar
  93. 93.
    Thomas C, James BD, Lomax FD, Kuhn IF (2000) Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline? Int J Hydrog Energy 25:551–567. Scholar
  94. 94.
    Urch H, Geismann C, Ulbricht M, Epple M (2006) Deposition of functionalized calcium phosphate nanoparticles on functionalized polymer surfaces. Mater und Werkstofftechnik Entwicklung, Fert Prüfung, Eig und Anwendungen Tech Werkstoffe 37:422–425Google Scholar
  95. 95.
    van Zoelen W, ten Brinke G (2009) Thin films of complexed block copolymers. Soft Matter 5:1568–1582CrossRefGoogle Scholar
  96. 96.
    Verweij H (2003) Ceramic membranes: morphology and transport. J Mater Sci 38:4677–4695CrossRefGoogle Scholar
  97. 97.
    Wang M, Wang Z, Zhao S et al (2017) Recent advances on mixed matrix membranes for CO2 separation. Chin J Chem Eng 25:1581–1597. Scholar
  98. 98.
    Wang Y, Yang Q, Zhong C, Li J (2017) Theoretical investigation of gas separation in functionalized nanoporous graphene membranes. Appl Surf Sci 407:532–539. Scholar
  99. 99.
    Ward TL, Dao T (1999) Model of hydrogen permeation behavior in palladium membranes. J Memb Sci 153:211–231CrossRefGoogle Scholar
  100. 100.
    Wee S-L, Tye C-T, Bhatia S (2008) Membrane separation process—pervaporation through zeolite membrane. Sep Purif Technol 63:500–516. Scholar
  101. 101.
    Wei S, Zhou S, Wu Z et al (2018) Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification. Appl Surf Sci 441:631–638. Scholar
  102. 102.
    Weng T-H, Tseng H-H, Wey M-Y (2009) Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int J Hydrog Energy 34:8707–8715CrossRefGoogle Scholar
  103. 103.
    Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Memb Sci 107:1–21. Scholar
  104. 104.
    Wijmans JGH, Baker RW (2006) The solution-diffusion model: a unified approach to membrane permeation. Materials science of membranes for gas and vapor separation. Wiley, Chichester, UK, pp 159–189CrossRefGoogle Scholar
  105. 105.
    Yamazaki IM, Paterson R, Geraldo LP (1996) A new generation of track etched membranes for microfiltration and ultrafiltration. Part I: Preparation and characterisation. J Memb Sci 118:239–245. Scholar
  106. 106.
    Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45:3298–3311. Scholar
  107. 107.
    Yilanci A, Dincer I, Ozturk HK (2009) A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog Energy Combust Sci 35:231–244. Scholar
  108. 108.
    Yu S, Welp U, Hua LZ et al (2005) Fabrication of palladium nanotubes and their application in hydrogen sensing. Chem Mater 17:3445–3450. Scholar
  109. 109.
    Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831CrossRefGoogle Scholar
  110. 110.
    Zhang J, Xin Q, Li X et al (2019) Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. J Memb Sci 570–571:343–354. Scholar
  111. 111.
    Zhang W, Gaggl M, Gluth GJG, Behrendt F (2014) Gas separation using porous cement membrane. J Environ Sci 26:140–146. Scholar
  112. 112.
    Zito PF, Caravella A, Brunetti A et al (2017) Knudsen and surface diffusion competing for gas permeation inside silicalite membranes. J Memb Sci 523:456–469CrossRefGoogle Scholar
  113. 113.
    Zito PF, Caravella A, Brunetti A et al (2018) Discrimination among gas translation, surface and Knudsen diffusion in permeation through zeolite membranes. J Memb Sci 564:166–173. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rajesh Kumar
    • 1
  • Kamakshi
    • 2
  • Manoj Kumar
    • 1
  • Kamlendra Awasthi
    • 1
    Email author
  1. 1.Department of PhysicsMalaviya National Institute of TechnologyJaipurIndia
  2. 2.Department of PhysicsBanasthali VidyapithVanasthaliIndia

Personalised recommendations