Advertisement

Unplugged Activities in the Context of AI

  • Annabel LindnerEmail author
  • Stefan Seegerer
  • Ralf Romeike
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11913)

Abstract

Due to its great importance in the media, the start-up world and the political discussion, artificial intelligence (AI) is becoming increasingly relevant as a topic for schools. Until now, approaches to making AI tangible for students without actually programming an AI system have been rare. To address this circumstance, a teaching sequence of unplugged activities about AI has been developed and is presented. AI Unplugged provides CS Unplugged activities that present the ideas and concepts of computer science without using computers. The activities shed light on important concepts of AI and make it possible to convey the central ideas of artificial intelligence to the students. In addition, they offer starting points for discussing social issues around AI. This article describes the activities and their theoretical background, outlines a possible course of instruction, and describes practical experiences with AI Unplugged.

Keywords

Artificial intelligence CS Unplugged Machine learning Teaching activities 

References

  1. 1.
    Bell, T., Rosamond, F., Casey, N.: Computer science unplugged and related projects in math and computer science popularization. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 398–456. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30891-8_18CrossRefGoogle Scholar
  2. 2.
    Bell, T., Tymann, P., Yehudai, A.: The big ideas in computer science for K-12 curricula. Bull. EATCS 1(124) (2018) Google Scholar
  3. 3.
    Bell, T., Witten, I., Fellows, M.: Computer Science Unplugged: Off-line Activities and Games for All Ages. Citeseer (1998)Google Scholar
  4. 4.
    Brinda, T., Diethelm, I.: Education in the digital networked world. In: Tatnall, A., Webb, M. (eds.) WCCE 2017. IAICT, vol. 515, pp. 653–657. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-74310-3_66CrossRefGoogle Scholar
  5. 5.
    Bundesregierung: Strategie Künstliche Intelligenz der Bundesregierung [German strategy for artificial intelligence] (2018). https://www.bmbf.de/files/Nationale_KI-Strategie.pdf. Accessed 18 June 2019
  6. 6.
    CSTA: About the CSTA K-12 computer science standards (2017). https://www.csteachers.org/page/standards. Accessed 15 June 2019
  7. 7.
    Demšar, I., Demšar, J.: CS unplugged: experiences and extensions. In: Brodnik, A., Vahrenhold, J. (eds.) ISSEP 2015. LNCS, vol. 9378, pp. 106–117. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25396-1_10CrossRefGoogle Scholar
  8. 8.
    Ertel, W.: Introduction to Artificial Intelligence. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-58487-4CrossRefGoogle Scholar
  9. 9.
    Gallenbacher, J.: The adventure of computer science. In: Böckenhauer, H.-J., Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher Altitudes. LNCS, vol. 11011, pp. 538–548. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98355-4_31CrossRefGoogle Scholar
  10. 10.
    Garcia, D., Harvey, B., Segars, L.: CS principles pilot at University of California, Berkeley. ACM Inroads 3(2), 58–60 (2012)CrossRefGoogle Scholar
  11. 11.
    Geldreich, K., Funke, A., Hubwieser, P.: A programming circus for primary schools. In: Proceedings of the 9th International Conference on Informatics in Schools: Situation, Evolution, and Perspectives, pp. 49–50 (2016)Google Scholar
  12. 12.
    Holder, C., Khurana, V., Watts, M.: Artificial intelligence: public perception, attitude and trust (2018). https://www.bristows.com/assets/pdf/Artificial%20Intelligence_%20Public%20Perception%20Attitude%20and%20Trust%20(Bristows).pdf. Accessed 06 June 2019
  13. 13.
    International Society for Technology in Education (ISTE): Bold new program helps teachers and students explore the power of AI (2018). https://www.iste.org/explore/articleDetail?articleid=2229. Accessed 15 June 2019
  14. 14.
    Kahn, K., Megasari, R., Piantari, E., Junaeti, E.: AI programming by children using snap! block programming in a developing country. In: EC-TEL Practitioner Proceedings 2018: 13th European Conference On Technology Enhanced Learning, Leeds, UK, 3–6 September 2018 (2018). http://ceur-ws.org/Vol-2193/paper1.pdf
  15. 15.
    Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., Huber, P.: Artificial intelligence and computer science in education: from kindergarten to university. In: 2016 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE (2016)Google Scholar
  16. 16.
    Knobelsdorf, M., Schulte, C.: Computer science in context: pathways to computer science. In: Proceedings of the Seventh Baltic Sea Conference on Computing Education Research - Volume 88, Koli Calling 2007, pp. 65–76 (2007)Google Scholar
  17. 17.
    Langley, P.: The changing science of machine learning. Mach. Learn. 82(3), 275–279 (2011).  https://doi.org/10.1007/s10994-011-5242-yCrossRefGoogle Scholar
  18. 18.
    Nishida, T., Kanemune, S., Idosaka, Y., Namiki, M., Bell, T., Kuno, Y.: A CS unplugged design pattern. ACM SIGCSE Bull. 41(1), 231–235 (2009)CrossRefGoogle Scholar
  19. 19.
    Puhlmann, H., et al.: Grundsätze und Standards für die Informatik in der Schule [Principles and standards for computer science education in schools]. Bildungsstandards Informatik für die Sekundarstufe I. Beilage zu LOG IN (150/151) (2008)Google Scholar
  20. 20.
    Seegerer, S., Romeike, R.: Was jeder über Informatik lernen sollte - Eine Analyse von Hochschulkursen für Studierende anderer Fachrichtungen [What everyone should know about computer science - an analysis of university courses for students from other fields]. In: HDI 2018, Potsdam, pp. 13–28 (2018). https://publishup.uni-potsdam.de/files/41354/cid12.pdf
  21. 21.
    Thies, R., Vahrenhold, J.: Reflections on outreach programs in CS classes: learning objectives for “unplugged” activities. In: Proceedings of the 43rd ACM Technical Symposium on Computer Science Education, SIGCSE 2012, pp. 487–492. ACM, New York (2012).  https://doi.org/10.1145/2157136.2157281
  22. 22.
    Touretzky, D., Gardner-McCune, C., Martin, F., Seehorn, D.: Envisioning AI for K-12: what should every child know about AI? In: “Blue sky talk” at the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) (2019)Google Scholar
  23. 23.
    Williams, R., Park, H.W., Oh, L., Breazeal, C.: PopBots: designing an artificial intelligence curriculum for early childhood education (2019)Google Scholar
  24. 24.
    Witten, H., Hornung, M.: Chatbots Teil 1: Einführung in eine Unterrichtsreihe zu Informatik im Kontext (IniK). [Chatbots, part 1: Introduction to a teaching sequence about computer science in context]. LOG IN 28(154/155), 51–60 (2008)Google Scholar
  25. 25.
    Yu, Y., Chen, Y.: Design and development of high school artificial intelligence textbook based on computational thinking. Open Access Libr. J. 5(09), 1 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Annabel Lindner
    • 1
    Email author
  • Stefan Seegerer
    • 1
  • Ralf Romeike
    • 2
  1. 1.Computing Education Research GroupFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Computing Education Research GroupFreie UniversitätBerlinGermany

Personalised recommendations