Advertisement

Gauge Fixing of Superconformal Symmetries

  • Edoardo Lauria
  • Antoine Van Proeyen
Chapter
  • 54 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 966)

Abstract

In this chapter we combine the actions for vector multiplets and hypermultiplets, containing also compensating multiplets. We gauge fix the superconformal symmetries that are not necessary for the super-Poincaré theory, and in such way obtain matter-coupled Poincaré supergravity theories. We extensively discuss pure supergravity (using also other compensating multiplets leading to the off-shell theory) and discuss its reduction to \(\mathcal {N}=1\). Then we discuss appropriate variables for the gauge fixing of general matter couplings.

References

  1. 1.
    B. de Wit, P.G. Lauwers, A. Van Proeyen, Lagrangians of N = 2 supergravity–matter systems. Nucl. Phys. B255, 569–608 (1985). https://doi.org/10.1016/0550-3213(85)90154-3 ADSCrossRefGoogle Scholar
  2. 2.
    B. de Wit, J.W. van Holten, Multiplets of linearized \( \operatorname {\mathrm {SO}}(2)\) supergravity. Nucl. Phys. B155, 530–542 (1979). https://doi.org/10.1016/0550-3213(79)90285-2 ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E.S. Fradkin, M.A. Vasiliev, Minimal set of auxiliary fields and S matrix for extended supergravity. Lett. Nuovo Cimento 25, 79–90 (1979). https://doi.org/10.1007/BF02776267 CrossRefGoogle Scholar
  4. 4.
    B. de Wit, J.W. van Holten, A. Van Proeyen, Transformation rules of N = 2 supergravity multiplets. Nucl. Phys. B167, 186–204 (1980). https://doi.org/10.1016/0550-3213(80)90125-X ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    B. de Wit, R. Philippe, A. Van Proeyen, The improved tensor multiplet in N = 2 supergravity. Nucl. Phys. B219, 143–166 (1983). https://doi.org/10.1016/0550-3213(83)90432-7 ADSCrossRefGoogle Scholar
  6. 6.
    M. Kaku, P.K. Townsend, Poincaré supergravity as broken superconformal gravity. Phys. Lett. 76B, 54–58 (1978). https://doi.org/10.1016/0370-2693(78)90098-9 ADSCrossRefGoogle Scholar
  7. 7.
    S. Ferrara, P. Van Nieuwenhuizen, Structure of supergravity. Phys. Lett. B78, 573 (1978) https://doi.org/10.1016/0370-2693(78)90642-1 ADSCrossRefGoogle Scholar
  8. 8.
  9. 9.
    B. de Wit, S. Ferrara, On higher-order invariants in extended supergravity. Phys. Lett. B81, 317 (1979) https://doi.org/10.1016/0370-2693(79)90343-5 ADSCrossRefGoogle Scholar
  10. 10.
    S. Ferrara, An overview on broken supergravity models, in Proceedings of the Conference on 2nd Oxford Quantum Gravity (1980)Google Scholar
  11. 11.
    B. de Wit, J.W. van Holten, A. Van Proeyen, Structure of N = 2 supergravity. Nucl. Phys. B184, 77–108 (1981). https://doi.org/10.1016/0550-3213(83)90548-5, https://doi.org/10.1016/0550-3213(81)90211-X [Erratum: Nucl. Phys. B 222, 516 (1983)]
  12. 12.
    P. Fayet, Fermi–Bose hypersymmetry. Nucl. Phys. B113, 135 (1976). https://doi.org/10.1016/0550-3213(76)90458-2 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Fayet, Spontaneous generation of massive multiplets and central charges in extended supersymmetric theories. Nucl. Phys. B149, 137 (1979). https://doi.org/10.1016/0550-3213(79)90162-7 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Van Proeyen, N = 2 Supergravity multiplets, in Proceedings of the 17th Winterschool Conference on Developments in the Theory of Fundamental Interactions, Karpacz, ed. by L. Turko, A. Pekalski (Harwood Academic Publishers, Reading, 1981), pp. 57–93Google Scholar
  15. 15.
    B. de Wit, J.W. van Holten, A. Van Proeyen, Central charges and conformal supergravity. Phys. Lett. 95B, 51–55 (1980). https://doi.org/10.1016/0370-2693(80)90397-4 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    B. de Wit, P.G. Lauwers, R. Philippe, A. Van Proeyen, Noncompact N = 2 supergravity. Phys. Lett. 135B, 295 (1984). https://doi.org/10.1016/0370-2693(84)90395-2 ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M.F. Sohnius, P.C. West, An alternative minimal off-shell version of N = 1 supergravity. Phys. Lett. B105, 353 (1981). https://doi.org/10.1016/0370-2693(81)90778-4 ADSCrossRefGoogle Scholar
  18. 18.
    T.L. Curtright, D.Z. Freedman, Nonlinear σ models with extended supersymmetry in four dimensions. Phys. Lett. B90, 71 (1980). https://doi.org/10.1016/0370-2693(80)90054-4, https://doi.org/10.1016/0370-2693(80)91028-X [Erratum: Phys. Lett. B 91, 487 (1980)]
  19. 19.
    L. Andrianopoli, R. D’Auria, S. Ferrara, Supersymmetry reduction of N-extended supergravities in four dimensions. J. High Energy Phys. 3, 025 (2002). https://doi.org/10.1088/1126-6708/2002/03/025, arXiv:hep-th/0110277 [hep-th] CrossRefGoogle Scholar
  20. 20.
    L. Andrianopoli, R. D’Auria, S. Ferrara, Consistent reduction of N = 2 → N = 1 four dimensional supergravity coupled to matter. Nucl. Phys. B628, 387–403 (2002). https://doi.org/10.1016/S0550-3213(02)00090-1, arXiv:hep-th/0112192 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Y. Yamada, Off-shell N = 2 → N = 1 reduction in 4D conformal supergravity. J. High Energy Phys. 6, 002 (2019)  https://doi.org/10.1007/JHEP06(2019)002, arXiv:1902.00121 [hep-th]
  22. 22.
    T. Kugo, K. Ohashi, Off-shell d = 5 supergravity coupled to matter–Yang–Mills system. Prog. Theor. Phys. 105, 323–353 (2001).  https://doi.org/10.1143/PTP.105.323, arXiv:hep-ph/0010288 [hep-ph] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    T. Kugo, K. Ohashi, Superconformal tensor calculus on an orbifold in 5D. Prog. Theor. Phys. 108, 203–228 (2002).  https://doi.org/10.1143/PTP.108.203, arXiv:hep-th/0203276 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, R. Halbersma, S. Vandoren, A. Van Proeyen, Superconformal N = 2, D = 5 matter with and without actions. J. High Energy Phys. 10, 045 (2002). https://doi.org/10.1088/1126-6708/2002/10/045, arXiv:hep-th/0205230 [hep-th] CrossRefGoogle Scholar
  25. 25.
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, A. Van Proeyen, N = 2 supergravity in five dimensions revisited. Classical Quantum Gravity 21, 3015–3041 (2004). https://doi.org/10.1088/0264-9381/23/23/C01, https://doi.org/10.1088/0264-9381/21/12/013, arXiv:hep-th/0403045[hep-th] [Erratum 23, 7149 (2006)]
  26. 26.
    M. Günaydin, M. Zagermann, The gauging of five-dimensional, N = 2 Maxwell–Einstein supergravity theories coupled to tensor multiplets. Nucl. Phys. B572, 131–150 (2000). https://doi.org/10.1016/S0550-3213(99)00801-9, arXiv:hep-th/9912027 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    A. Ceresole, G. Dall’Agata, General matter coupled \(\mathcal {N} = 2\), D = 5 gauged supergravity. Nucl. Phys. B585, 143–170 (2000). https://doi.org/10.1016/S0550-3213(00)00339-4, arXiv:hep-th/0004111 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    L. Andrianopoli, R. D’Auria, L. Sommovigo, On the coupling of tensors to gauge fields: D = 5, N = 2 supergravity revisited. arXiv:hep-th/0703188 [HEP-TH]
  29. 29.
    B. Vanhecke, A. Van Proeyen, Covariant field equations in supergravity. Fortsch. Phys. 65(12), 1700071 (2017).  https://doi.org/10.1002/prop.201700071, arXiv:1705.06675 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    G. Sierra, P.K. Townsend, An introduction to N = 2 rigid supersymmetry, in Supersymmetry and Supergravity 1983, ed. by B. Milewski (World Scientific, Singapore, 1983)Google Scholar
  31. 31.
    B. Craps, F. Roose, W. Troost, A. Van Proeyen, What is special Kähler geometry? Nucl. Phys. B503, 565–613 (1997). https://doi.org/10.1016/S0550-3213(97)00408-2, arXiv:hep-th/9703082 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    D.S. Freed, Special Kähler manifolds. Commun. Math. Phys. 203, 31–52 (1999). https://doi.org/10.1007/s002200050604, arXiv:hep-th/9712042 [hep-th]
  33. 33.
    D.V. Alekseevsky, V. Cortés, C. Devchand, Special complex manifolds. J. Geom. Phys. 42, 85–105 (2002). https://doi.org/10.1016/S0393-0440(01)00078-X, arXiv:math/9910091 [math.DG] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    B. de Wit, P.G. Lauwers, R. Philippe, S.Q. Su, A. Van Proeyen, Gauge and matter fields coupled to N = 2 supergravity. Phys. Lett. B134, 37–43 (1984). https://doi.org/10.1016/0370-2693(84)90979-1 ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    B. de Wit, A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity—Yang–Mills models. Nucl. Phys. B245, 89–117 (1984). https://doi.org/10.1016/0550-3213(84)90425-5 ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Strominger, Special geometry. Commun. Math. Phys. 133, 163–180 (1990). https://doi.org/10.1007/BF02096559 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    G. Gibbons and P. Rychenkova, Cones, tri-Sasakian structures and superconformal invariance. Phys. Lett. B443, 138–142 (1998). https://doi.org/10.1016/S0370-2693(98)01287-8, arXiv:hep-th/9809158 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    B. de Wit, B. Kleijn, S. Vandoren, Superconformal hypermultiplets. Nucl. Phys. B568, 475–502 (2000). https://doi.org/10.1016/S0550-3213(99)00726-9, arXiv:hep-th/9909228 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    E. Cremmer, C. Kounnas, A. Van Proeyen, J. Derendinger, S. Ferrara, B. de Wit, L. Girardello, Vector multiplets coupled to N = 2 supergravity: super-Higgs effect, flat potentials and geometric structure, Nucl. Phys. B250, 385–426 (1985). https://doi.org/10.1016/0550-3213(85)90488-2 ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    E. Cremmer, A. Van Proeyen, Classification of Kähler manifolds in N = 2 vector multiplet–supergravity couplings. Classical Quantum Gravity 2, 445 (1985). https://doi.org/10.1088/0264-9381/2/4/010 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    M. Günaydin, G. Sierra, P.K. Townsend, The geometry of N = 2 Maxwell–Einstein supergravity and Jordan algebras. Nucl. Phys. B242, 244–268 (1984). https://doi.org/10.1016/0550-3213(84)90142-1 ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    L. Castellani, R. D’Auria, S. Ferrara, Special Kähler geometry: an intrinsic formulation from N = 2 space-time supersymmetry. Phys. Lett. B241, 57–62 (1990). https://doi.org/10.1016/0370-2693(90)91486-U ADSCrossRefGoogle Scholar
  43. 43.
    L. Castellani, R. D’Auria, S. Ferrara, Special geometry without special coordinates. Classical Quantum Gravity 7, 1767–1790 (1990). https://doi.org/10.1088/0264-9381/7/10/009 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    R. D’Auria, S. Ferrara, P. Frè, Special and quaternionic isometries: general couplings in N = 2 supergravity and the scalar potential. Nucl. Phys. B359, 705–740 (1991). https://doi.org/10.1016/0550-3213(91)90077-B ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    E. Witten, J. Bagger, Quantization of Newton’s constant in certain supergravity theories. Phys. Lett. B115, 202–206 (1982). https://doi.org/10.1016/0370-2693(82)90644-X ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    J. Bagger, Supersymmetric sigma models, in Supersymmetry, ed. by K. Dietz et al. NATO Advanced Study Institute, Series B, Physics, vol. 125 (Plenum Press, New York, 1985)CrossRefGoogle Scholar
  47. 47.
    D.Z. Freedman, D. Roest, A. Van Proeyen, Off-shell Poincaré supergravity. J. High Energy Phys. 02, 102 (2017).  https://doi.org/10.1007/JHEP02(2017)102, arXiv:1701.05216 [hep-th]
  48. 48.
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, A. Van Proeyen, The map between conformal hypercomplex/hyper-Kähler and quaternionic(-Kähler) geometry. Commun. Math. Phys. 262, 411–457 (2006). https://doi.org/10.1007/s00220-005-1475-6, arXiv:hep-th/0411209 [hep-th] ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    M. Ozkan, Off-shell \( \mathcal {N}= 2\) linear multiplets in five dimensions. J. High Energy Phys. 11, 157 (2016).  https://doi.org/10.1007/JHEP11(2016)157, arXiv:1608.00349 [hep-th]
  50. 50.
    E. Bergshoeff, E. Sezgin, A. Van Proeyen, Superconformal tensor calculus and matter couplings in six dimensions. Nucl. Phys. B264, 653 (1986). https://doi.org/10.1016/0550-3213(86)90503-1 [Erratum: Nucl. Phys. B 598, 667 (2001)]ADSCrossRefGoogle Scholar
  51. 51.
    A. Van Proeyen, N = 2 matter couplings in d = 4 and 6 from superconformal tensor calculus, in Proceedings of the 1st Torino Meeting on Superunification and Extra Dimensions, ed. R. D’Auria, P. Fré (World Scientific, Singapore, 1986), pp. 97–125Google Scholar
  52. 52.
    E. Bergshoeff, Superconformal invariance and the tensor multiplet in six dimensions, in Proceedings of the 1st Torino Meeting on Superunification and Extra Dimensions, ed. R. D’Auria, P. Fré (World Scientific, Singapore, 1986) pp. 126–137Google Scholar
  53. 53.
    F. Coomans, A. Van Proeyen, Off-shell \(\mathcal {N}=(1,0)\), D = 6 supergravity from superconformal methods. J. High Energy Phys. 1102, 049 (2011).  https://doi.org/10.1007/JHEP02(2011)049, arXiv:1101.2403 [hep-th]
  54. 54.
    N. Marcus, J.H. Schwarz, Field theories that have no manifestly Lorentz-invariant formulation. Phys. Lett. 115B, 111 (1982). https://doi.org/10.1016/0370-2693(82)90807-3 ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    H. Nishino, E. Sezgin, Matter and gauge couplings of N = 2 supergravity in six dimensions. Phys. Lett. 144B, 187–192 (1984). https://doi.org/10.1016/0370-2693(84)91800-8 ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    H. Nishino, E. Sezgin, The complete N = 2, d = 6 supergravity with matter and Yang-Mills couplings. Nucl. Phys. B278, 341, 353–379 (1986). https://doi.org/10.1016/0550-3213(86)90218-X ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    F. Riccioni, All couplings of minimal six-dimensional supergravity. Nucl. Phys. B605, 245–265 (2001). https://doi.org/10.1016/S0550-3213(01)00199-7, arXiv:hep-th/0101074 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    L.J. Romans, Self-duality for interacting fields: covariant field equations for six-dimensional chiral supergravities. Nucl. Phys. B276, 71 (1986). https://doi.org/10.1016/0550-3213(86)90016-7,ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    H. Nishino, E. Sezgin, New couplings of six-dimensional supergravity. Nucl. Phys. B505, 497–516 (1997). https://doi.org/10.1016/S0550-3213(97)00357-X, arXiv:hep-th/9703075 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    S. Ferrara, F. Riccioni, A. Sagnotti, Tensor and vector multiplets in six-dimensional supergravity. Nucl. Phys. B519, 115–140 (1998). https://doi.org/10.1016/S0550-3213(97)00837-7, arXiv:hep-th/9711059 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    L. Alvarez-Gaumé, E. Witten, Gravitational Anomalies. Nucl. Phys. B234, 269, 269 (1984) https://doi.org/10.1016/0550-3213(84)90066-X,Google Scholar
  62. 62.
    M.B. Green, J.H. Schwarz, P.C. West, Anomaly-free chiral theories in six dimensions. Nucl. Phys. B254, 327–348 (1985). https://doi.org/10.1016/0550-3213(85)90222-6 ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    S. Randjbar-Daemi, A. Salam, E. Sezgin, J.A. Strathdee, An anomaly-free model in six dimensions. Phys. Lett. 151B, 351–356 (1985). https://doi.org/10.1016/0370-2693(85)91653-3 ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    A. Sagnotti, A note on the Green-Schwarz mechanism in open string theories. Phys. Lett. B294, 196–203 (1992). https://doi.org/10.1016/0370-2693(92)90682-T, arXiv:hep-th/9210127 [hep-th] ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Edoardo Lauria
    • 1
  • Antoine Van Proeyen
    • 2
  1. 1.CPHTEcole PolytechniquePalaiseauFrance
  2. 2.Institute for Theoretical PhysicsKU LeuvenLeuvenBelgium

Personalised recommendations