Nanostructured Carbon-Based Materials for Adsorption of Organic Contaminants from Water

  • Roosevelt D. S. Bezerra
  • Paulo R. S. Teixeira
  • Edson C. da Silva-Filho
  • Anderson O. Lobo
  • Bartolomeu C. VianaEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Graphene is currently one of the most promising carbon-based materials being studied in the world due to its novel electronic, thermal and optical properties. Nowadays, graphene can be considered the basis for the whole family of carbon nanomaterials, except for diamond structure. Because of that, several methods of graphene production have been studied; however, such methods need to be improved and the scaling is still a bottleneck for the productive sector. This article presents the main way to produce graphene and some techniques to modify its surface. In addition, here we present a review about graphene and its derivatives in the adsorption from the aqueous medium of the most diverse types of organic contaminants in the environment, such as pharmaceuticals, dyes, surfactants, pesticides, etc. We have shown that graphene and its derivatives are efficient adsorbents for the removal of emerging organic pollutants from the environment.


  1. 1.
    Abdi, G., Alizadeh, A., Amirian, J., Rezaei, S., Sharma, G.: Polyamine-modified magnetic graphene oxide surface: feasible adsorbent for removal of dyes. J. Mol. Liq. 289, 111118 (2019)CrossRefGoogle Scholar
  2. 2.
    Achary, L.S.K., Kumar, A., Rout, L., Kunapuli, S.V.S., Dhaka, R.S., Dash, P.: Phosphate functionalized graphene oxide with enhanced catalytic activity for Biginelli type reaction under condition. Chem. Eng. J. 331, 300–310 (2018)CrossRefGoogle Scholar
  3. 3.
    Algamdi, M.S., Alsohaimi, I.H., Lawler, J., Ali, H.M., Aldawsari, A.M., Hassan, H.M.A.: Fabrication of graphene oxide incorporated polyethersulfone hydrid ultrafiltration membranes for humic acid removal. Sep. Purif. Technol. 223, 17–23 (2019)CrossRefGoogle Scholar
  4. 4.
    Al-Khateeb, L.A., Almotiry, S., Salam, M.A.: Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem. Eng. J. 248, 191–199 (2014)CrossRefGoogle Scholar
  5. 5.
    Ali, M.E.A.: Preparation of graphene nanosheets by electrochemical exfotiation of a grafite-nanoclay composite electrode: application for the adsorption of organic dyes. Colloids Surf., A 570, 107–116 (2019)CrossRefGoogle Scholar
  6. 6.
    Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2009)CrossRefGoogle Scholar
  7. 7.
    Ayan-Varela, M., Paredes, J.I., Rodil, S.V., Rozada, R., Martinez Alonso, A., Tascon, J.M.D.: A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents. Carbon 75, 390–400 (2014)CrossRefGoogle Scholar
  8. 8.
    Azizi, A., Moniri, E., Hassani, A.H., Panahi, H.A., Miralinaghi, M.: Polymerization of graphene oxide with polystyrene: non-linear isotherms and kinetics studies anionic dyes. Microchem. J. 145, 559–565 (2019)CrossRefGoogle Scholar
  9. 9.
    Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., First, P.N.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)CrossRefGoogle Scholar
  10. 10.
    Bhattacharyya, A., Mondal, D., Roy, I., Sarkar, G., Saha, N.R., Rana, D., Ghosh, T.K., Mandal, D., Chakraborty, M., Chattopadhyay, C.: Studies of the kinetics and mechanism of the removal process of proflavine dye through adsorption by graphene oxide. J. Mol. Liq. 230, 696–704 (2017)CrossRefGoogle Scholar
  11. 11.
    Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., Bipasha, F.A., Hossain, S.S.: Synthesis of graphene. Int. Nano Lett. 6, 65–83 (2016)CrossRefGoogle Scholar
  12. 12.
    Borthakur, P., Boruah, P.K., Das, M.R., Kulik, N., Minofar, B.: adsorption of 17α-ethynyl estradiol and β-estradiol on graphene oxide surface: An experimental and computational study. J. Mol. Liq. 269, 160–168 (2018)CrossRefGoogle Scholar
  13. 13.
    Boruah, P.K., Sharma, B., Hussain, N., Das, M.R.: Magnetically recoverable Fe3O4/graphene nanocoposite towards efficient removal of triazine pesticides from aqueous solution: investigation of the adsorption phenomenon and specific ion effect. Chemosphere 168, 1058–1067 (2017)CrossRefGoogle Scholar
  14. 14.
    Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859)CrossRefGoogle Scholar
  15. 15.
    Burakov, A., Neskoromnaya, E., Babkin, A.: Removal of the Alizarin Red S anionic dye using graphene nanocomposites: a study on kinetic under dynamic conditions. Mater. Today: Proc. 11, 392–397 (2019)Google Scholar
  16. 16.
    Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K.: Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018)CrossRefGoogle Scholar
  17. 17.
    Chappell, G.A., Rager, J.E.: Epigenetics in chemical-induced genotoxic carcinogenesis. Curr. Opin. Toxicol. 6, 10–17 (2017)CrossRefGoogle Scholar
  18. 18.
    Chaste, J., Saadani, A., Jaffre, A., Madouri, A., Alvarez, J., Pierucci, D., Aziza, Z.B., Ouerghi, A.: Nanostructures in suspended mono- and bilayer epitaxial graphene. Carbon 125, 162–167 (2017)CrossRefGoogle Scholar
  19. 19.
    Chen, J., Ma, Y., Wang, L., Han, W., Chai, Y., Wang, T., Li, J., Ou, L.: Preparation of chitosan/SiO2-loaded graphene composite beads for efficient removal of bilirubin. Carbon 143, 352–361 (2019)CrossRefGoogle Scholar
  20. 20.
    Chen, P., Li, H., Song, S., Weng, X., He, D., Zhao, Y.: Adsorption of dodecylamine hydrochloride on graphene oxide in water. Result Phys. 7, 2281–2288 (2017)CrossRefGoogle Scholar
  21. 21.
    Chen, Y., Chen, L., Bai, H., Li, L.: Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A 1, 1992–2001 (2013)CrossRefGoogle Scholar
  22. 22.
    Choucair, M., Thordarson, P., Stride, J.A.: Gram-scale production of graphene based on solvothermal synthesis and sonication. J. Mater. Chem. A 4, 30–33 (2009)Google Scholar
  23. 23.
    Chu, K., Wang, F., Wang, X., Huang, D.: Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater. Sci. Eng., A 713, 269–277 (2018)CrossRefGoogle Scholar
  24. 24.
    Chua, C., Pumera, M.: Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)CrossRefGoogle Scholar
  25. 25.
    Ci, L.J., Song, L., Jariwala, D., Elias, A.L., Gao, W., Terrones, M., Ajayan, P.M.: Graphene shape control by multistage cutting and transfer. Adv. Mater. 21, 4487–4491 (2009)CrossRefGoogle Scholar
  26. 26.
    Cui, J., Li, J., Qiu, H., Yang, G., Zheng, S., Yang, J.: Zwitterionic graphene oxide modified with silane molecules for multiple applications. Chem. Phys. Lett. 706, 543–547 (2018)CrossRefGoogle Scholar
  27. 27.
    Deblonde, T., Cossu-Leguille, C., Hartemann, P.: Emerging pollutants in wastewater: a review of the literature. Int. J. Hyg. Environ. Health 214(6), 442–448 (2011)CrossRefGoogle Scholar
  28. 28.
    Delhiraja, K., Vellingiri, K., Boukhvalov, D.W., Philip, L.: Development of highly water stable graphene oxide based composites for the removal of pharmaceuticals and personal care products. Ind. Eng. Chem. Res. 58, 2899–2913 (2019)CrossRefGoogle Scholar
  29. 29.
    Du, Q., Sun, J., Li, Y., Yang, X., Wang, X., Wang, Z., Xia, L.: Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles. Chem. Eng. J. 245, 99–106 (2014)CrossRefGoogle Scholar
  30. 30.
    Edwards, R.S., Coleman, K.S.: Graphene synthesis: relationship to applications. Nanoscale 5, 38–51 (2013)Google Scholar
  31. 31.
    Emtsev, K., Speck, F., Seyller, T., Ley, L., Riley, J.D.: Interaction, growth, and ordering of epitaxial graphene on SiC 0001 surfaces: a comparative photoelectron spectroscopy study. Physcal Rev. B 77, 155303 (2008)CrossRefGoogle Scholar
  32. 32.
    Gao, L., Guest, J.R., Guisinger, N.P.: Epitaxial graphene on Cu (111). Nano Lett. 10, 3512–3516 (2010)CrossRefGoogle Scholar
  33. 33.
    Gautam, R.K., & Chattopadhyaya, M.C.: Graphene-based nanocomposites as nanosorbents. Nanomater. Wastewater Remediat. 49–78 (2016)Google Scholar
  34. 34.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  35. 35.
    González, J.A., Villanueva, M.E., Piehl, L.L., Copello, G.J.: Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption study. Chem. Eng. J. 280, 41–48 (2015)CrossRefGoogle Scholar
  36. 36.
    Goodwin Jr., D.G., Adeleye, A.S., Sung, L., Ho, K.T., Burgess, R.M., Petersen, E.J.: Detection and quantification of graphene-family nanomaterials in the environment. Environ. Sci. Technol. 52, 4491–4513 (2018)CrossRefGoogle Scholar
  37. 37.
    Hiew, B.Y.Z., Lee, L.Y., Lai, K.C., Gan, S., Thangalazhy-Gopakumar, S., Pan, G., Yang, T.C.: Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environ. Res. 168, 241–253 (2019)CrossRefGoogle Scholar
  38. 38.
    Hong, Y.L., Ryu, S., Jeong, H.S., Kim, Y.: Surface functionalization effect of graphene oxide on its liquid crystalline and assembly behaviors. Appl. Surf. Sci. 480, 514–522 (2019)CrossRefGoogle Scholar
  39. 39.
    Huang, D., Xu, B., Wu, J., Brookes, P.C., Xu, J.: Adsorption and desorption of phenanthrene by magnetic graphene nanomaterials from water: roles of pH, heavy metal ions and natural organic metter. Chem. Eng. J. 368, 390–399 (2019)CrossRefGoogle Scholar
  40. 40.
    Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Zhang, H.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011)CrossRefGoogle Scholar
  41. 41.
    Hummers, W., Offeman, R.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRefGoogle Scholar
  42. 42.
    Jankovský, O., Novácek, M., Luxa, J., Sedmidubský, D., Fila, V., Pumera, M., Sofer, Z.: A new member of the graphene family: graphene acid. Chem. Eur. J. 22, 17416–17424 (2016)CrossRefGoogle Scholar
  43. 43.
    Jiang, Y., Xu, R., Tan, Z., Ji, G., Fan, G., Li, Z., Xiong, D., Guo, Q., Li, Z., Zhang, D.: Interface-induced strain hardening of graphene nanosheet/aluminum composites. Carbon 146, 17–27 (2019)CrossRefGoogle Scholar
  44. 44.
    Kerkez-Kuyumcu, O., Bayazit, S.S., Salam, M.A.: Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. J. Ind. Eng. Chem. 36, 198–205 (2016)CrossRefGoogle Scholar
  45. 45.
    Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)CrossRefGoogle Scholar
  46. 46.
    Konicki, W., Aleksandrzak, M., Mijowska, E.: Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem. Eng. Res. Des. 123, 35–49 (2017)CrossRefGoogle Scholar
  47. 47.
    Konicki, W., Aleksandrzak, M., Moszynski, D., Mijowska, E.: Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies. J. Colloid Interdace Sci. 496, 188–200 (2017)CrossRefGoogle Scholar
  48. 48.
    Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., Lee, J.H.: Recent advances in grapheme based polymer composites. Prog. Polym. Sci. 35, 1350–1375 (2010)CrossRefGoogle Scholar
  49. 49.
    Kyzas, G.Z., Deliyanni, E.A., Bikiaris, D.N.: Mitropoulos, A.C. Graphene composites as dye adsorbents Review. Chem. Eng. Res. Des. 129, 75–88 (2018)CrossRefGoogle Scholar
  50. 50.
    Kyzas, G.Z., Koltsakidou, A., Nanaki, S.G., Bikiaris, D.N., Lambroupoulou, D.A.: Removal of beta-blockers from aqueous media by adsorption onto graphene oxide. Sci. Total Environ. 537, 411–420 (2015)CrossRefGoogle Scholar
  51. 51.
    Lai, K.C., Hiew, B.Y.Z., Lee, L.Y., Gan, S., Thangalazhy-Gopakumar, S., Chiu, W.S., Khiew, P.S.: Ice-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye. Biores. Technol. 274, 134–144 (2019)CrossRefGoogle Scholar
  52. 52.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRefGoogle Scholar
  53. 53.
    Li, M., Meng, X., Huang, K., Feng, J., Jiang, S.: A Novel composite adsorbent for the separation and recovery of indium from aqueous solutions. Hydrometallurgy 186, 73–82 (2019)CrossRefGoogle Scholar
  54. 54.
    Li, G., Yuan, J.B., Zhang, Y.H., Zhang, N., Liew, K.M.: Microstructure and mechanical performance of graphene reinforced cementitious composites. Compos. A 114, 188–195 (2018)CrossRefGoogle Scholar
  55. 55.
    Li, Z., Fu, X., Guo, Q., Zhao, L., Fan, G., Li, Z., Xionf, D., Su, Y., Zhang, D.: Graphene quality dominated interface deformation behavior of graphene-metal composite: the defective is better. Int. J. Plast 111, 253–265 (2018)CrossRefGoogle Scholar
  56. 56.
    Li, X., Magnuson, C.W., Venugopal, A., Na, J., Suk, J.W., Han, B., Zhu, Y., Fu, L., Vogel, E.M., Voelkl, E., Colombo, L., Ruoff, R.S.: Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10, 4328–4334 (2010)CrossRefGoogle Scholar
  57. 57.
    Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colomb, L., Ruoff, R.S.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009)CrossRefGoogle Scholar
  58. 58.
    Liang, X., Chang, A.S.P., Zhang, Y., Harteneck, B.D., Choo, H., Olynick, D.L., Cabrini, S.: Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites. Nano Lett. 9, 467–472 (2008)CrossRefGoogle Scholar
  59. 59.
    Liu, C., Liu, H., Zhang, K., Dou, M., Pan, B., He, X., Lu, C.: Partly reduced graphene oxide aerogels induced by proanthocyanidins for efficient dye removal. Biores. Technol. 282, 148–155 (2019)CrossRefGoogle Scholar
  60. 60.
    Liu, S.-H., Tang, W.-T., Yang, Y.-H.: Adsorption of nicotine in aqueous solution by a defective graohene oxide. Sci. Total Environ. 643, 507–515 (2018)CrossRefGoogle Scholar
  61. 61.
    Liu, G., Li, L., Xu, D., Huang, X., Xu, X., Zheng, S., Zhang, Y., Lin, H.: Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohyd. Polym. 175, 584–591 (2017)CrossRefGoogle Scholar
  62. 62.
    Liu, F.-F., Zhao, J., Wang, S., Xing, B.: Adsorption of sulfonamides on reduced graphene oxides as effected by pH and dissolved organic matter. Environ. Pollut. 210, 85–93 (2016)CrossRefGoogle Scholar
  63. 63.
    Mahmoodi, N.M., Ghezelbash, M., Shabanian, M., Aryanasab, F., Saeb, M.R.: Efficient removal of cationic dyes from colored wastewaters by dithiocarbamate-functionalized graphene oxide nanosheets: from synthesis to detailed kinetics studies. J. Taiwan Inst. Chem. Eng. 81, 239–246 (2017)CrossRefGoogle Scholar
  64. 64.
    Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRefGoogle Scholar
  65. 65.
    Marquardt, D., Beckert, F., Pennetreau, F., Tolle, F., Mulhaupt, R., Riant, O., Hermans, S., Barthel, J., Janiak, C.: Hybrid materials of platinum nanoparticles and thiol-functionalized graphene derivatives. Carbon 66, 285–294 (2014)CrossRefGoogle Scholar
  66. 66.
    McCoy, T.M., Turpin, G., Teo, B.M., Tabor, R.F.: Graphene oxide: a surfactant or particle? Curr. Opin. Colloid Interface Sci. 39, 98–109 (2019)CrossRefGoogle Scholar
  67. 67.
    Molla, A., Li, Y., Mandal, B., Kang, S.G., Hur, S.H., Chung, J.S.: Selective adsorption of organic dyes on graphene oxide: theorical and experimental analysis. Appl. Surf. Sci. 464, 170–177 (2019)CrossRefGoogle Scholar
  68. 68.
    Moradi, O., Gupta, V.K., Agarwal, S., Tyagi, I., Asif, M., Makhlouf, A.S.H., Sadegh, H., Shahryari-ghoshekandi, R.: Characteristics and electrical conductivity of graphene and graphene oxide for adsorption cationic dyes from liquids: Kinetic and thermodynamic study. J. Ind. Eng. Chem. 28, 294–301 (2015)CrossRefGoogle Scholar
  69. 69.
    Moussavi, G., Hossaini, Z., Pourakbar, M.: High-rate adsorption of acentaminophen from the contaminated water onto double-oxidized graphene oxide. Chem. Eng. J. 287, 665–673 (2016)CrossRefGoogle Scholar
  70. 70.
    Naeem, H., Ajmal, M., Qureshi, R.B., Muntha, S.T., Farooq, M., Siddiq, M.: Facile synthesis of graphene oxide silver nanocomposite for decontamination of water from multiple pollutants by adsorption, catalysis and antibacterial activity. J. Environ. Manage. 230, 199–211 (2019)CrossRefGoogle Scholar
  71. 71.
    N’Diaye, A.T., Coraux, J., Plasa, T.N., Busse, C., Michely, T.: Structure of epitaxial graphene on Ir(111). New J. Phys. 10(4), 043033 (2008)CrossRefGoogle Scholar
  72. 72.
    Nigar, S., Wang, H., Imtiaz, M., Yu, J., Zhou, Z.: Adsorption mechanism of ferrocene molecule on pristine and functionalized graphene. Appl. Surf. Sci. 481, 1466–1473 (2019)CrossRefGoogle Scholar
  73. 73.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2014)CrossRefGoogle Scholar
  74. 74.
    Novoselov, K.S.: Nobel lecture: graphene: materials in Flatland. Rev. Mod. Phys. 83, 837–849 (2011)CrossRefGoogle Scholar
  75. 75.
    Oliveira, E.H.C., Mendonça, É.T., Barauna, O.S., Ferreira, J.M., Da Motta Sobrinho, M.A.: Study of variables for optimization of the dye indosol adsorption process using red mud and clay as adsorbents. Adsorption 22, 59–69 (2016)CrossRefGoogle Scholar
  76. 76.
    Pei, S., Cheng, H.: The reduction of graphene oxide. Carbon 50, 3210–3228 (2010)CrossRefGoogle Scholar
  77. 77.
    Pei, Q.X., Zhang, Y.W., Shenoy, V.B.: A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48, 898–904 (2010)CrossRefGoogle Scholar
  78. 78.
    Peng, G., Zhang, M., Deng, S., Shan, D., He, Q., Yu, G.: Adsorption and catalytic oxidation of pharmaceuticals by nitrogen-doped reduced graphene oxide/Fe3O4 nanocoposite. Chem. Eng. J. 341, 361–370 (2018)CrossRefGoogle Scholar
  79. 79.
    Perreault, F., Fonseca De Faria, A., Elimelech, M.: Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44, 5861–5896 (2015)CrossRefGoogle Scholar
  80. 80.
    Phiri, J., Gane, P., Maloney, T.C.: General overview of graphene: Production, properties and application in polymer composites. Mater. Sci. Eng. 215, 9–28 (2017)CrossRefGoogle Scholar
  81. 81.
    Prabhu, S.M., Khan, A., Farzana, M.H., Hwang, G.C., Lee, W., Lee, G.: synthesis and characterization of graphene oxide-doped nano-hydroxyapatite and its adsorption performance of toxic diazo dyes from aqueous solution. J. Mol. Liq. 269, 746–754 (2018)CrossRefGoogle Scholar
  82. 82.
    Prediger, P., Cheminski, T., Neves, T.F., Nunes, W.B., Sabino, L., Picone, C.S.F., Oliveira, R.L., Correia, C.R.D.: Graphene oxide nanomaterials for the removal of non-ionic surfactant from water. J. Environ. Chem. Eng. 6(1), 1536–1545 (2018)CrossRefGoogle Scholar
  83. 83.
    Puri, C., Sumana, G.: Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmotillonite nanocomposite. Appl. Clay Sci. 166, 102–112 (2018)CrossRefGoogle Scholar
  84. 84.
    PuvaneswarI, N., Muthukrishnan, J., Gunasekaran, P.: Toxicity assessment and microbial degradation of azo dyes. Indian J. Exp. Biol. 44, 618–626 (2006)Google Scholar
  85. 85.
    Radnia, H., Rashidi, A., Nazar, A.R.S., Eskandari, M.M., Jalilian, M.: A novel nanofluid based on sulfonated graphene for enhanced oil recovery. J. Mol. Liq. 271, 795–806 (2018)CrossRefGoogle Scholar
  86. 86.
    Rajabi, M., Mahanpoor, K., Moradi, O.: Preparation of PMMA/GO and PMMA/GO-Fe3O4 nanocomposites for malachite green dye adsorption: kinetic and thermodynamic studies. Compos. B Eng. 167, 544–555 (2019)CrossRefGoogle Scholar
  87. 87.
    Rao, C.N.R., Maitra, U., Matte, H.S.S.R. Synthesis.: Characterization, and selected properties of graphene. In: Rao, C.N.R., Sood, A. K. (Eds.) Graphene: Synthesis, Properties, and Phenomena, 1st ed., pp. 1–47, (2012)Google Scholar
  88. 88.
    Rao, C.N.R., Sood, A.K.: Graphene: Synthesis, Properties, and Phenomena, p. 436. Wiley-VCH, Verlag GmbH, Weinheim (2012)CrossRefGoogle Scholar
  89. 89.
    Ray, S.K., Majumder, C., Saha, P.: Functionalized reduced graphene oxide (FRGO) for removal of fulvic acid contaminant. RSC Advances 7, 21768–21779 (2017)CrossRefGoogle Scholar
  90. 90.
    Reina, A., Jia, X.T., Ho, J., Nezich, D., Son, H., Bulovic, V., Mildred Dresselhaus, S., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)CrossRefGoogle Scholar
  91. 91.
    Ren, W., Chang, H., Mao, T., Teng, Y.: Planarity effect of polychlorinated biphenyls adsorption by graphene nanomaterials: the influence of graphene characteristics, solution pH and temperature. Chem. Eng. J. 263, 160–168 (2019)CrossRefGoogle Scholar
  92. 92.
    Ren, H., Kulkarni, D.D., Kodiyath, R., Xu, W., Choi, I., Tsukruk, V.V.: Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide. Appl. Mater. Interfaces 6(4), 2459–2470 (2014)CrossRefGoogle Scholar
  93. 93.
    Robati, D., Rajabi, M., Moradi, O., Najafi, F., Tyagi, I., AgarwaL, S., Gupta, V.K.: Kinetics and thermodynamics of malachite green dye adsorption from aqueous solutions on graphene oxide and reduced graphene oxide. J. Mol. Liq. 214, 259–263 (2016)CrossRefGoogle Scholar
  94. 94.
    Rostamian, R., Behnejad, H.: A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets. Ecotoxicol. Environ. Saf. 147, 117–123 (2018)CrossRefGoogle Scholar
  95. 95.
    Rostamian, R., Behnejad, H.: A comparative adsorption study of sulfamethoxazole onto graphene and graphe oxide nanosheets through equilibrium, kinetic and thermodynamic modeling. Process Saf. Environ. Prot. 102, 20–29 (2016)CrossRefGoogle Scholar
  96. 96.
    Sahu, M., Raichur, A.M.: Toughening of high performance tetrafunctional epoxy with poly(allyl amine) grafted graphene oxide. Compos. B Eng. 168, 15–24 (2019)CrossRefGoogle Scholar
  97. 97.
    Sekulic, M.T., Boskovic, N., Slavkovic, A., Garunovic, J., Kolakovic, S., Pap, S.: Surface functionalized adsorbent for emerging pharmaceutical removal: adsorption performance and mechanisms. Process Saf. Environ. Prot. 215, 50–63 (2019)CrossRefGoogle Scholar
  98. 98.
    Segundo, J.E.D.V., Vilar, E.O.: Grafeno: Uma revisão sobre as propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos. Rev. Eletrônica Mater. E Process. 11, 54–57 (2016)Google Scholar
  99. 99.
    Sham, A.Y.W., Notley, S.M.: Adsorption of organic dyes from aqueous solutions using surfactant exfoliated graphene. J. Environ. Chem. Eng. 6, 495–504 (2018)CrossRefGoogle Scholar
  100. 100.
    Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)CrossRefGoogle Scholar
  101. 101.
    Song, Z., Ma, Y.-L., Li, C.-E.: The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite. Sci. Total. Environ. 168, 580–590 (2019)CrossRefGoogle Scholar
  102. 102.
    Staudenmaier, L.: Verfahren zur Darstellung der Graphitsaure. Eur. J. Inorg. Chem. 31, 1481–1487 (1898)Google Scholar
  103. 103.
    Sun, Y., Yang, Y., Yang, M., Yu, F., Ma, J.: Response surface methodological evaluation and optimization for adsorption removal of ciprofloxacin onto graphene hydrogel. J. Mol. Liq. 284, 124–130 (2019)CrossRefGoogle Scholar
  104. 104.
    Szczesniak, B., Choma, J., Jaroniec, M.: Ultrahigh benzene adsorption capacity of graphene-MOF composite fabricated via MOF crystallization in 3D mesoporous graphene. Microporous Mesoporous Mater. 279, 387–394 (2019)CrossRefGoogle Scholar
  105. 105.
    Tahriri, M., Del Monico, M., Moghanian, A., Yaraki, M.T., Torres, R., Yadegari, A., Tayebi, L.: Graphene and its derivatives: opportunities and challenges in destistry. Mater. Sci. Eng., C 102, 171–185 (2019)CrossRefGoogle Scholar
  106. 106.
    Tang, C., Yu, P., Tang, L., Wang, Q., Bao, R., Liu, Z., Yang, M., Yang, W.: Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicol. Environ. Saf. 165, 299–306 (2018)CrossRefGoogle Scholar
  107. 107.
    Terracciano, A., Zhang, J., Christodoulatos, C., Wu, F., Meng, X.: Adsorption of Ca2+ on single layer graphene oxide. J. Environ. Sci. 57, 8–14 (2017)CrossRefGoogle Scholar
  108. 108.
    Viculis, L.M., Mack, J.J., Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)CrossRefGoogle Scholar
  109. 109.
    Wang, P., Zhang, D., Tang, H., Li, H., Pan, B.: New insights on the understanding of the high adsorption of bisphenol compounds on reduced graphene oxide at high pH values via charge assisted hydrogen bond. J. Hazard. Mater. 371, 513–520 (2019)CrossRefGoogle Scholar
  110. 110.
    Wang, J., Chen, B., Xing, B.: Wrinkles and folds of activated graphene nanosheets as fast and efficient adsorptive sites for hydrophobic organic contaminants. Environ. Sci. Technol. 50, 3798–3808 (2016)CrossRefGoogle Scholar
  111. 111.
    Wang, J., Chen, B.: Adsorption and coadsorption of organic pollutanrs and a heavy metal by graphene oxide and rediced graphene materials. Chem. Eng. J. 281, 379–388 (2015)CrossRefGoogle Scholar
  112. 112.
    Wallace, P.R.: The Band Theory of Graphite. Physical Review Journal 71, 622–634 (1947)CrossRefGoogle Scholar
  113. 113.
    Wu, Y.H., Yu, T., Shen, Z.X.: Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108(7), 071301 (2010)CrossRefGoogle Scholar
  114. 114.
    Wu, X., Li, X., Song, Z., Berger, C., de Heer, W.A.: Weak antilocalization in epitaxial graphene: evidence for chiral electrons. Phys. Rev. Lett. 98, 136801 (2007)CrossRefGoogle Scholar
  115. 115.
    Xiong, X.-Q., Bao, Y.-L., Liu, H., Zhu, Q., Lu, R., Miyakoshi, T.: Study on mechanical and electrical properties of cellulose nanofibrils/graphene-modified natural rubber. Mater. Chem. Phys. 223, 535–541 (2019)CrossRefGoogle Scholar
  116. 116.
    Xu, W., Chen, Y., Zhang, W., Li, B.: Fabrication of graphene oxide/bentonite composites with excellent adsorption performances for toluidine blue removal from aqueous solution. Adv. Powder Technol. 30, 493–501 (2019)CrossRefGoogle Scholar
  117. 117.
    Yadav, A., Upadhyaya, A., Gupta, S.K., Verma, A.S., Negi, C.M.S.: Poly-(3-hexylthiophene)/graphene composite based organic photodetectors: the influence of graphene insertion. Thin Solid Films 675, 128–135 (2019)CrossRefGoogle Scholar
  118. 118.
    Yang, W., Zhao, Q., Xin, L., Qiao, J., Zou, J., Shao, P., Yu, Z., Zhang, Q., Wu, G.: Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by infiltration method. J. Alloy. Compd. 732, 748–758 (2018)CrossRefGoogle Scholar
  119. 119.
    Yamjala, K., Nainar, M.S., Ramisetti, N.R.: Methods for the analysis of azo dyes employed in food industry–a review. Food Chem. 192, 813–824 (2016)CrossRefGoogle Scholar
  120. 120.
    Yi, H., Huang, D., Zeng, G., Lai, C., Qin, L., Cheng, M., Ye, S., Song, B., Ren, X., Guo, X.: Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl. Catal. B: Environ. B 239, 408–424 (2018)CrossRefGoogle Scholar
  121. 121.
    Yu, L., Wang, L., Xu, W., Chen, L., Fu, M., Wu, J., Ye, D.: Adsorption of VOCs on reduced graphene oxide. J. Environ. Sci. 67, 171–178 (2018)CrossRefGoogle Scholar
  122. 122.
    Zare, E.N., Motahari, A., Sillanpää, M.: Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ. Res. 162, 173–195 (2018)CrossRefGoogle Scholar
  123. 123.
    Zhang, C., Luan, J., Yu, X., Chen, W.: characterization and adsorption performance of graphene oxide-montmorillonite nanocomposite for the simultaneous removal of Pb2+ and p-nitrophenol. J. Hazard. Mater. 378, 120739 (2019)CrossRefGoogle Scholar
  124. 124.
    Zhang, W., Chen, J., Hu, Y., Fang, Z., Cheng, J., Chen, Y.: Adsorption characteristics of tetrabromobisphenol A onto sodium bisulfite reduced graphene oxide aerogels. Colloids Surf. A 538, 781–788 (2018)CrossRefGoogle Scholar
  125. 125.
    Zhang, Y., Small, J.P., Pontius, W.V., Kim, P.: Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86(7), 073104 (2005)CrossRefGoogle Scholar
  126. 126.
    Zhao, X., Tang, J., Yu, F., Ye, N.: Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition. J. Alloy. Compd. 766, 266–273 (2018)CrossRefGoogle Scholar
  127. 127.
    Zhu, S., Liu, Y.-G., Liu, S.-B., Zeng, G.-M., Jiang, L.-H., Tan, X.-F., Zhou, L., Zeng, W., Li, T.-T., Yang, C.-P.: Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 179, 20–28 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roosevelt D. S. Bezerra
    • 1
  • Paulo R. S. Teixeira
    • 2
  • Edson C. da Silva-Filho
    • 3
  • Anderson O. Lobo
    • 3
  • Bartolomeu C. Viana
    • 3
    • 4
    Email author
  1. 1.Federal Institute of Piauí, Teresina-Central Campus, IFPITeresinaBrazil
  2. 2.Federal Institute of Piauí, Teresina-Zona Sul Campus, IFPITeresinaBrazil
  3. 3.Interdisciplinary Laboratory for Advanced Materials (LIMAv)Federal University of PiauiTeresinaBrazil
  4. 4.Materials Physics Laboratory (FisMat), Department of PhysicsFederal University of PiauiTeresinaBrazil

Personalised recommendations