Advertisement

Underwater Photogrammetry Reconstruction: GPU Texture Generation from Videos Captured via AUV

  • Kolton YagerEmail author
  • Christopher Clark
  • Timmy Gambin
  • Zoë J. Wood
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11844)

Abstract

Photogrammetry is a useful tool for creating computer models of archaeological sites for monitoring and for general public outreach. Modeling archaeological sites found in the marine environment is particularly challenging due to danger to divers, the cost of underwater photography equipment and lighting challenges. The automatic acquisition of video footage of underwater marine archaeology sites using an AUV can be an advantageous alternative, yet also incurs its own obstacles. In this paper we present our system and enhancements for applying a standard photogrammetry reconstruction pipeline to underwater sites using video footage captured from an AUV. Our primary contribution is a GPU driven algorithm for texture construction to reduce blur in the final model. We demonstrate the results of our system on a well known wreck site in Malta.

Keywords

Photogrammetry Texture generation Autonomous underwater vehicles Marine archaeology Color correction 

Notes

Acknowledgements

We would like to acknowledge the entire 2018 ICEX team. This material is based upon work supported by the National Science Foundation under Grant No. 1460153.

References

  1. 1.
    Ffmpeg 4.1. fFmpeg Team (2018)Google Scholar
  2. 2.
    Dive+ world’s diving community app, life Plus Tech (Shenzhen) Co., Ltd. (2019)Google Scholar
  3. 3.
    Agisoft-LLC: Agisoft photoscan (2010)Google Scholar
  4. 4.
    Allène, C., Pons, J.P., Keriven, R.: Seamless image-based texture atlases using multi-band blending. In: 19th International Conference on Pattern Recognition (ICPR 2008), France, p. 10, no. 1 (2008)Google Scholar
  5. 5.
    Baumberg, A.: Blending images for texturing 3D models. In: Proceedings of the British Machine Vision Conference (2002)Google Scholar
  6. 6.
    Bazeille, S., Quidu, I., Jaulin, L., Malkasse, J.P.: Automatic underwater image pre-processing. In: CMM 2006 (2006)Google Scholar
  7. 7.
    Callieri, M., Cignoni, P., Corsini, M., Scopigno, R.: Masked photo blending: mapping dense photographic dataset on high-resolution 3D models. Comput. Graph. 32, 464–473 (2008)CrossRefGoogle Scholar
  8. 8.
    Candeloro, M., Mosciaro, F., Srensen, A.J., Ippoliti, G., Ludvigsen, M.: Sensor-based autonomous path-planner for sea-bottom exploration and mosaicking. In: IFAC Conference on Manoeuvring and Control of Marine Craft, pp. 31–36 (2015)Google Scholar
  9. 9.
    Chen, Z., Zhou, J., Chen, Y., Wang, G.: 3D texture mapping in multi-view reconstruction. In: Bebis, G., et al. (eds.) ISVC 2012. LNCS, vol. 7431, pp. 359–371. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33179-4_35CrossRefGoogle Scholar
  10. 10.
    Dale, L.K., Amato, N.M.: Probabilistic roadmaps-putting it all together. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), vol. 2, pp. 1940–1947, May 2001.  https://doi.org/10.1109/ROBOT.2001.932892
  11. 11.
    Debevec, P.E.: Modeling and rendering architecture from photographs. Ph.D. thesis, University of California at Berkeley, Computer Science Division, Berkeley CA (1996)Google Scholar
  12. 12.
    Fallon, M.F., Kaess, M., Johannsson, H., Leonard, J.J.: Efficient AUV navigation fusing acoustic ranging and side-scan sonar. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE Computer Society (2011)Google Scholar
  13. 13.
    von Fock, S.M.T.S., et al.: Pipeline for reconstruction and visualization of underwater archaeology sites using photogrammetry. In: Proceedings of the 2017 ISCA International Conference on Computers and Their Applications, March 2017Google Scholar
  14. 14.
    Iqbal, K., Odetayo, M.O., James, A.E., Salam, R.A., Talib, A.Z.: Enhancing the low quality images using unsupervised colour correction method. In: SMC, pp. 1703–1709 (2010)Google Scholar
  15. 15.
    Li, T.Y., Shie, Y.C.: An incremental learning approach to motion planning with roadmap management. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 4, pp. 3411–3416, May 2002Google Scholar
  16. 16.
    McCarthy, J., Benjamin, J.: Multi-image photogrammetry for underwater archaeological site recording: an accessible, diver-based approach. J. Marit. Archaeol. 9(1), 95–114 (2014)CrossRefGoogle Scholar
  17. 17.
    Paull, L., Saeedi, S., Seto, M., Li, H.: AUV navigation and localization: a review. IEEE J. Oceanic Eng. 39(1), 131–149 (2014)CrossRefGoogle Scholar
  18. 18.
    Petit, F., Capelle-Laize, A.S., Carre, P.: Underwater image enhancement by attenuation inversionwith quaternions (2009)Google Scholar
  19. 19.
    Poppinga, J., Birk, A., Pathak, K., Vaskevicius, N.: Fast 6-DOF path planning for autonomous underwater vehicles (AUV) based on 3D plane mapping. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–6. IEEE Press (2011)Google Scholar
  20. 20.
    Rantanen, M.: Improving probabilistic roadmap methods for fast motion planning. Ph.D. thesis, School of Information Sciences, University of Tampere, August 2014Google Scholar
  21. 21.
    Ruiz, I.T., De Raucourt, S., Petillot, Y., Lane, D.M.: Concurrent mapping and localization using sidescan sonar. IEEE J. Oceanic Eng. 29(2), 442–456 (2004)CrossRefGoogle Scholar
  22. 22.
    Van Damme, T.: Computer vision photogrammetry for underwater archaeological site recording in a low-visibility environment. Remote Sensing & Spatial Information Sciences, International Archives of the Photogrammetry (2015)Google Scholar
  23. 23.
    Viswanathan, V.K., et al.: AUV motion-planning for photogrammetric reconstruction of marine archaeological sites. In: IEEE International Conference on Robotics and Automation (2017)Google Scholar
  24. 24.
    Waechter, M., Moehrle, N., Goesele, M.: Let there be color! large-scale texturing of 3D reconstructions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 836–850. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10602-1_54CrossRefGoogle Scholar
  25. 25.
    Wu, J., et al.: Multi-AUV motion planning for archeological site mapping and photogrammetric reconstruction. J. Field Robot. 36, 1250–1269 (2019)CrossRefGoogle Scholar
  26. 26.
    Yamafune, K., Torres, R., Castro, F.: Multi-image photogrammetry to record and reconstruct underwater shipwreck sites. J. Archaeol. Method Theory 24, 703–725 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kolton Yager
    • 1
    Email author
  • Christopher Clark
    • 2
  • Timmy Gambin
    • 3
  • Zoë J. Wood
    • 1
  1. 1.Computer Science DepartmentCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  2. 2.Engineering DepartmentHarvey Mudd CollegeClaremontUSA
  3. 3.Department of Classics and ArcheologyUniversity of MaltaMsidaMalta

Personalised recommendations