Advertisement

Content-Based Health Recommender System for ICU Patient

  • Asif Ahmed NeloyEmail author
  • Muhammad Shafayat Oshman
  • Md. Monzurul Islam
  • Md. Julhas Hossain
  • Zunayeed Bin Zahir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11909)

Abstract

In this study, the authors propose a generic architecture, associated terminology and a classificatory model for observing ICU patient’s health condition with a Content-Based Recommender (CBR) system consisting of K-Nearest Neighbors (KNN) and Association Rule Mining (ARM). The aim of this research is to predict or classify the critically conditioned ICU patients for taking immediate actions to reduce the mortality rate. Predicting the health of the patients with automatic deployment of the models is the key concept of this research. IBM Cloud is used as Platform as a Service (PaaS) to store and maintain the hospital data. The proposed model demonstrates an accuracy of 95.6% from the KNN Basic ‘\( ball\_tree \)’ algorithm. Also, real-time testing of the deployed model showed an accuracy of 87% while comparing the output with the actual condition of the patient. Combining the IBM Cloud with the Recommender System and early prediction of the health, this proposed research can provide a complete medical decision for the doctors.

Keywords

Content-Based Recommender KNN Association mining Apriori Eclat IBM cloud ICU patient monitoring Out of sample validation 

References

  1. 1.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72079-9_10CrossRefGoogle Scholar
  2. 2.
    Breiter, G., et al.: Software defined environments based on TOSCA in IBM cloud implementations. IBM J. Res. Deve. 58 (2014).  https://doi.org/10.1147/JRD.2014.2304772CrossRefGoogle Scholar
  3. 3.
    Aher, S.B., Lobo, L.: Combination of machine learning algorithms for recommendation of courses in E-Learning System based on historical data. Knowl. Based Syst. 51, 1–14 (2013).  https://doi.org/10.1016/j.knosys.2013.04.015CrossRefGoogle Scholar
  4. 4.
    Shinde, S.A., Rajeswari, P.R.: Intelligent health risk prediction systems using machine learning: a review. Int. J. Eng. Technol. 7, 1019 (2018).  https://doi.org/10.14419/ijet.v7i3.12654CrossRefGoogle Scholar
  5. 5.
    Nithya, B., Ilango, V.: Predictive analytics in health care using machine learning tools and techniques. In: 2017 International Conference on Intelligent Computing and Control Systems (ICICCS) (2017).  https://doi.org/10.1109/ICCONS.2017.8250771
  6. 6.
    Shimada K., et al.: Drug-recommendation system for patients with infectious diseases. In: AMIA Annual Symposium, p. 1112 (2005)Google Scholar
  7. 7.
    Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., Mueller, A.: Scikit-learn. GetMobile Mob. Comput. Commun. 19, 29–33 (2015).  https://doi.org/10.1145/2786984.2786995CrossRefGoogle Scholar
  8. 8.
    Borgelt, C., Kruse, R.: Induction of Association Rules: Apriori Implementation. Compstat, 395–400 (2002).  https://doi.org/10.1007/978-3-642-57489-4_59CrossRefGoogle Scholar
  9. 9.
    Lahitani, A.R., Permanasari, A.E., Setiawan, N.A.: Cosine similarity to determine similarity measure: study case in online essay assessment. In: 2016 4th International Conference on Cyber and IT Service Management (2016).  https://doi.org/10.1109/citsm.2016.7577578
  10. 10.
    Qaiser, S., Ali, R.: Text mining: use of TF-IDF to examine the relevance of words to documents. Int. J. Comput. Appl. 181, 25–29 (2018).  https://doi.org/10.5120/ijca2018917395CrossRefGoogle Scholar
  11. 11.
    Pang, H., Jung, S.-H.: Sample size considerations of prediction-validation methods in high-dimensional data for survival outcomes. Genet. Epidemiol. 37, 276–282 (2013).  https://doi.org/10.1002/gepi.21721CrossRefGoogle Scholar
  12. 12.
    Kanjanatarakul, O., Kuson, S., Denoeux, T.: An evidential K-nearest neighbor classifier based on contextual discounting and likelihood maximization. In: Destercke, S., Denoeux, T., Cuzzolin, F., Martin, A. (eds.) BELIEF 2018. LNCS (LNAI), vol. 11069, pp. 155–162. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99383-6_20CrossRefGoogle Scholar
  13. 13.
    Cecil, R.R., Soares, J.: IBM Watson studio: a platform to transform data to intelligence. In: Barbosa-Povoa, A.P., Jenzer, H., de Miranda, J.L. (eds.) Pharmaceutical Supply Chains - Medicines Shortages. LNL, pp. 183–192. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-15398-4_13CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Asif Ahmed Neloy
    • 1
    Email author
  • Muhammad Shafayat Oshman
    • 1
  • Md. Monzurul Islam
    • 1
  • Md. Julhas Hossain
    • 1
  • Zunayeed Bin Zahir
    • 1
  1. 1.Electrical and Computer Engineering DepartmentNorth South UniversityDhakaBangladesh

Personalised recommendations