Advertisement

MEMS Gyroscopes’ Noise Simulation Algorithm

  • Dmytro Fedasyuk
  • Tetyana MarusenkovaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1080)

Abstract

MEMS gyroscopes are advantageous devices that promote a wide range of applications, however, they suffer from various stochastic errors some of which accumulate over time (angle random walk, bias random walk). To be able to use such devices, one should apply mathematical models of stochastic processes and hardware-software tools for investigation into noise, figure out the noise characteristics and develop an appropriate method of adaptive signal filtering. The Allan deviation plot is considered the most common tool for studying noise spectral characteristics. However, when distorted by unexpected noise components, the Allan deviation plot becomes difficult to interpret. The aim of this work is to present an algorithm for generating noise typical of real MEMS gyroscopes and its implementation as a part of a complex hardware-software tool for investigation into inertial measurement units, being developed by the authors. With such a tool for simulating noise with specific spectral characteristics, the researcher will be able to understand and explain the behavior of a MEMS gyroscope and thus fit a reasonable filtering method for it.

Keywords

MEMS gyroscope Inertial measurement unit Measurement error Noise synthesis Random walk 

References

  1. 1.
    Höflinger, F., Müller, J., Zhang, R., Reindl, L., Burgard, W.: A wireless micro inertial measurement unit (IMU). IEEE Trans. Instrum. Meas. 62(9), 2583–2595 (2013).  https://doi.org/10.1109/TIM.2013.2255977CrossRefGoogle Scholar
  2. 2.
    Blasch, E., Kostek, P., Pačes, P., Kramer, K.: Summary of avionics technologies. IEEE Aerosp. Electron. Syst. Mag. 30(9), 6–11 (2015).  https://doi.org/10.1109/MAES.2015.150012CrossRefGoogle Scholar
  3. 3.
    Ahmed, H., Tahir, M.: Accurate attitude estimation of a moving land vehicle using low-cost MEMS IMU sensors. IEEE Trans. Intell. Transp. Syst. 18(7), 1723–1739 (2017).  https://doi.org/10.1109/TITS.2016.2627536CrossRefGoogle Scholar
  4. 4.
    Buke, A., Gaoli, F., Yongcai, W., Lei, S., Zhiqi, Y.: Healthcare algorithms by wearable inertial sensors: a survey. China Commun. 12(4), 1–12 (2015).  https://doi.org/10.1109/CC.2015.7114054CrossRefGoogle Scholar
  5. 5.
    Nemec, D., Janota, A., Hruboš, M., Šimák, V.: Intelligent real-time MEMS sensor fusion and calibration. IEEE Sens. J. 16(19), 7150–7160 (2016).  https://doi.org/10.1109/JSEN.2016.2597292CrossRefGoogle Scholar
  6. 6.
    Lima, P.: A Bayesian approach to sensor fusion in autonomous sensor and robot networks. IEEE Instrum. Meas. Mag. 10(3), 22–27 (2007).  https://doi.org/10.1109/MIM.2007.4284253CrossRefGoogle Scholar
  7. 7.
    Holyaka, R., Marusenkova, T.: Split Hall Structures: Parametric Analysis and Data Processing. Lambert Academic Publishing, Norderstedt (2018)Google Scholar
  8. 8.
    Shin, B., Kim, C., Kim, J., Lee, S., Kee, C., Kim, H., Lee, T.: Motion recognition-based 3D pedestrian navigation system using smartphone. IEEE Sens. J. 16(18), 6977–6989 (2016).  https://doi.org/10.1109/JSEN.2016.2585655CrossRefGoogle Scholar
  9. 9.
    Zekavat, S., Buehrer, R.M.: Handbook of Position Location – Theory, Practice, and Advances. Wiley, New Jersey (2019).  https://doi.org/10.1002/9781119434610.ch2CrossRefGoogle Scholar
  10. 10.
    Daroogheha, S., Lasky, T., Ravani, B.: Position measurement under uncertainty using magnetic field sensing. IEEE Trans. Magn. 54(12), 1–8 (2018).  https://doi.org/10.1109/TMAG.2018.2873158CrossRefGoogle Scholar
  11. 11.
    Li, Y., Georgy, J., Niu, X., Li, Q., El-Sheimy, N.: Autonomous calibration of MEMS gyros in consumer portable devices. IEEE Sens. J. 15(7), 4062–4072 (2015).  https://doi.org/10.1109/JSEN.2015.2410756CrossRefGoogle Scholar
  12. 12.
    Latt, W.T., Tan, U.-X., Riviere, C.N., Ang, W.T.: Transfer function compensation in gyroscope-free inertial measurement units for accurate angular motion sensing. IEEE Sens. J. 12(5), 1207–1208 (2012).  https://doi.org/10.1109/JSEN.2011.2165057CrossRefGoogle Scholar
  13. 13.
    Huang, J., Soong, B.: Cost-aware stochastic compressive data gathering for wireless sensor networks. IEEE Trans. Veh. Technol. 68(2), 1525–1533 (2019).  https://doi.org/10.1109/TVT.2018.2887091CrossRefGoogle Scholar
  14. 14.
    Shmaliy, Y., Zhao, S., Ahn, C.: Optimal and unbiased filtering with colored process noise using state differencing. IEEE Signal Process. Lett. 26(4), 548–551 (2019).  https://doi.org/10.1109/LSP.2019.2898770CrossRefGoogle Scholar
  15. 15.
    Lin, X., Jiao, Y., Zhao, D.: An improved Gaussian filter for dynamic positioning ships with colored noises and random measurements loss. IEEE Access 6, 6620–6629 (2018).  https://doi.org/10.1109/ACCESS.2018.2789336CrossRefGoogle Scholar
  16. 16.
    Allan, D., Levine, J.: A historical perspective on the development of the Allan variances and their strengths and weaknesses. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 513–519 (2016).  https://doi.org/10.1109/TUFFC.2016.2524687CrossRefGoogle Scholar
  17. 17.
    Guerrier, S., Molinari, R., Stebler, Y.: Theoretical limitations of Allan variance-based regression for time series model estimation. IEEE Signal Process. Lett. 23(5), 597–601 (2016).  https://doi.org/10.1109/LSP.2016.2541867CrossRefGoogle Scholar
  18. 18.
    Won, S., Melek, W., Golnaraghi, F.: A Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system. IEEE Trans. Industr. Electron. 57(5), 1787–1798 (2010).  https://doi.org/10.1109/TIE.2009.2032431CrossRefGoogle Scholar
  19. 19.
    Hsu, Y., Wang, J.: Random drift modeling and compensation for MEMS-based gyroscopes and its application in handwriting trajectory reconstruction. IEEE Access 7, 17551–17560 (2019).  https://doi.org/10.1109/ACCESS.2019.2895919CrossRefGoogle Scholar
  20. 20.
    Wang, Y.: Stochastic and dynamic modeling of MEMS gyroscopes. In: 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012.  https://doi.org/10.1109/icma.2012.6285749
  21. 21.
    Kim, D., M’Closkey, R.: Noise analysis of closed-Loop vibratory rate gyros. In: 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012.  https://doi.org/10.1109/acc.2012.6314985
  22. 22.
    Kim, D., M’Closkey, R.: Spectral analysis of vibratory gyro noise. IEEE Sens. J. 13, 4361–4374 (2013).  https://doi.org/10.1109/JSEN.2013.2269797CrossRefGoogle Scholar
  23. 23.
    Cao, H., Lv, H., Sun, Q.: Model design based on MEMS gyroscope random error. In: 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015.  https://doi.org/10.1109/icinfa.2015.7279648
  24. 24.
    Nazdrowicz, J., Napieralski, A.: Modelling, simulations and performance analysis of MEMS vibrating gyroscope in coventor MEMS+ environment. In: 2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Hannover, Germany, 24–27 March 2019.  https://doi.org/10.1109/eurosime.2019.8724520
  25. 25.
    Liu, Q., Han, B., Xu, J., Wu, M.: Random drift modeling for MEMS gyroscope based on lifting wavelet and wavelet neural network. In: 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011.  https://doi.org/10.1109/iceice.2011.5778009
  26. 26.
    Song, J., Shi, Z., Du, B., Wang, H.: The filtering technology of virtual gyroscope based on Taylor model in low dynamic state. IEEE Sens. J. 19, 5204–5212 (2019).  https://doi.org/10.1109/JSEN.2019.2902950CrossRefGoogle Scholar
  27. 27.
    Georgy, J., Noureldin, A., Korenberg, M., Bayoumi, M.: Modeling the stochastic drift of a MEMS-based gyroscope in Gyro/Odometer/GPS integrated navigation. IEEE Trans. Intell. Transp. Syst. 11, 856–872 (2010).  https://doi.org/10.1109/TITS.2010.2052805CrossRefGoogle Scholar
  28. 28.
    Woodman, O.: An Introduction to Inertial Navigation. University of Cambridge Computer Laboratory, Cambridge (2007)Google Scholar
  29. 29.
    Barrett, J.M.: Analyzing and modeling low-cost MEMS IMUs for use in an inertial navigation system. Master of Science degree thesis, Worchester Polytechnic Institute (2014)Google Scholar
  30. 30.
  31. 31.
    Fedasyuk, D., Marusenkova, T.: Analyser and mathematical model for synthesizing noise of MEMS gyroscopes In: Proceedings of International Scientific Conference “Computer Sciences and Information Technologies” (CSIT-2019), vol. 1, pp. 109–112. IEEE (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Lviv Polytechnic National UniversityLvivUkraine

Personalised recommendations