Selection of the Reference Stars for Astrometric Reduction of CCD-Frames

  • Vadym Savanevych
  • Volodymyr Akhmetov
  • Sergii KhlamovEmail author
  • Eugene Dikov
  • Alexsander Briukhovetskyi
  • Vladimir Vlasenko
  • Vladislav Khramtsov
  • Iana Movsesian
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1080)


In this paper we presented the new method for selection of the reference stars to carry out the astrometric reduction of sky images. The presented algorithm takes into account the main features of the formation of astronomical measurements in CCD-frames. Also to improve the accuracy and speed up processing the proposed method includes verification of candidates to the reference stars and excluding them if needed based on the specific rule. This computational method was successfully tested in the software for automated search and detection of asteroids, comets and satellites in a series of CCD-frames within the CoLiTec project. The comparative analysis of the accuracy of astronomical measurements of the Solar System small bodies by CoLiTec and Astrometrica software was performed as a result of research. The developed method for selection of the reference stars provides the high accuracy of measurements of celestial objects in digital images.


Big data Catalogues Reference stars Position observation Astrometry Reduction Digital frames 



The authors thank CDS (Strasbourg, France) who provided online access to the different astronomical catalogues by VizieR ( [18]. We especially thank all creators of astronomical catalogues and Astrometrica software that described in the paper. We are grateful to the reviewers for their helpful remarks that improved our paper.


  1. 1.
    Ericson, J.: Asteroids, Comets, and Meteorites. Cosmic Invaders of the Earth. Fact on File, New York (2003)Google Scholar
  2. 2.
    Kortencamp, S.: Asteroids, Comets, and Meteorids, p. 360. Capstone Press, Mankato (2012)Google Scholar
  3. 3.
    Rivkin, A.: Asteroids, Comets And Dwarf Planets. Greenwood Press, Santa Barbara (2009)Google Scholar
  4. 4.
    Kiselev, A.: Theoretical fundamentals of photographic astrometry. Moscow, Izdatel’stvo Nauka, 264 p. (1989). (In Russian)Google Scholar
  5. 5.
    Kallenberg, O.: Foundations of Modern Probability, p. 535. Springer, New York (1997). ISBN: 0387949577zbMATHGoogle Scholar
  6. 6.
    Khlamov, S., Savanevych, V., Briukhovetskyi, O., Pohorelov, A., Vlasenko, V., Dikov, E.: CoLiTec software for the astronomical data sets processing. In: Proceedings of the IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, pp. 227–230 (2018)Google Scholar
  7. 7.
    Khlamov, S., Savanevych, V., Briukhovetskyi, O., Pohorelov, A.: CoLiTec software – detection of the near-zero apparent motion. In: Proceedings of the International Astronomical Union, vol. 12(S325), pp. 349–352. Cambridge University Press (2017)Google Scholar
  8. 8.
    Kudzej, I., Savanevych, V., Briukhovetskyi, O., Khlamov, S., Pohorelov, A., Vlasenko, V., Dubovský, P., Parimucha, Š.: CoLiTecVS – a new tool for the automated reduction of photometric observations. Astron. Nachr. 340(1–3), 68–70 (2019)CrossRefGoogle Scholar
  9. 9.
    Raab, H.: Astrometrica: Astrometric data reduction of CCD images. Astrophysics Source Code Library, record: 1203.012 (2012)Google Scholar
  10. 10.
    Savanevych, V., Briukhovetskyi, A., Ivashchenko, Yu., Vavilova, I., Bezkrovniy, M., Dikov, E., Vlasenko, V., Sokovikova, N., Movsesian, I., Dikhtyar, N., Elenin, L., Pohorelov, A., Khlamov, S.: Comparative analysis of the positional accuracy of CCD measurements of small bodies in the solar system software CoLiTec and Astrometrica. Kinematics Phys. Celestial Bodies 31(6), 302–313 (2015)CrossRefGoogle Scholar
  11. 11.
    Iatsenko, A., Rybka, S.: Criteria for the selection of reference stars according to their proper motions. Astrometriia i Astrofizika 51, 75–79 (1984). (In Russian)Google Scholar
  12. 12.
    Gaia Collaboration: Summary of the astrometric, photometric, and survey properties. A & A 595(A2), 23 (2016)Google Scholar
  13. 13.
    Gaia Collaboration: The Gaia mission. A & A 595(A1), 36 (2016)Google Scholar
  14. 14.
    Akhmetov, V., Fedorov, P., Velichko, A., Shulga, V.: The PMA Catalogue: 420 million positions and absolute proper motions. MNRAS 469(1), 763–773 (2017)CrossRefGoogle Scholar
  15. 15.
    Fedorov, P., Akhmetov, V., Velichko, A.: Testing stellar proper motions of TGAS stars using data from the HSOY, UCAC5 and PMA catalogues. MNRAS 476(2), 2743–2750 (2018)CrossRefGoogle Scholar
  16. 16.
    Altmann, M., Roeser, S., Demleitner, M., Bastian, U., Schilbach, E.: Hot Stuff for One Year (HSOY). A 583 million star proper motion catalogue derived from Gaia DR1 and PPMXL. Astron. Astrophys. 600, L4–4 (2017)CrossRefGoogle Scholar
  17. 17.
    Zacharias, N., Finch, C., Frouard, J.: UCAC5: new proper motions using gaia DR1. Astron. J. 153, 166 (2017)CrossRefGoogle Scholar
  18. 18.
    Ochsenbein, F., Bauer, P., Marcout, J.: The VizieR database of astronomical catalogues. Astron. Astrophys., Suppl. Ser. 143(1), 23–32 (2000)CrossRefGoogle Scholar
  19. 19.
    Savanevych, V., Khlamov, S., Vavilova, I., Briukhovetskyi, A., Pohorelov, A., Mkrtichian, D., Kudak, V., Pakuliak, L., Dikov, E., Melnik, R., Vlasenko, V., Reichart, D.: A method of immediate detection of objects with a near-zero apparent motion in series of CCD-frames. Astron. Astrophys. 609(A54), 11 (2018)Google Scholar
  20. 20.
    Khlamov, S., Savanevych, V., Briukhovetskyi, O., Oryshych, S.: Development of computational method for detection of the object’s near-zero apparent motion on the series of CCD–frames. Eastern-Eur. J. Enterp. Technol. 2(9(80)), 41–48 (2016)Google Scholar
  21. 21.
    Savanevych, V., Briukhovetskyi, O., Sokovikova, N., Bezkrovny, M., Vavilova, I., Ivashchenko, Yu., Elenin, L., Khlamov, S., Movsesian, I., Dashkova, A., Pogorelov, A.: A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates. MNRAS 451(3), 3287–3298 (2015)CrossRefGoogle Scholar
  22. 22.
    Karttunen, H., Kroger, P., Oja, H., Poutanen, M., Donner, K.: Fundamental Astronomy, 4th edn. Springer, Berlin (2003)CrossRefGoogle Scholar
  23. 23.
    Mills, P.: Efficient statistical classification of satellite measurements. Int. J. Remote Sens. 32(21), 6109–6132 (2011)CrossRefGoogle Scholar
  24. 24.
    Skidmore, W., et al.: Thirty meter telescope detailed science case: 2015. Res. Astron. Astrophys. 15(12), 1945–2140 (2015)CrossRefGoogle Scholar
  25. 25.
    Tuell, M., Martin, H., Burge, J., Gressler, W., Zhao, C.: Optical testing of the LSST combined primary/tertiary mirror. In: Proceedings of the SPIE 7739, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation, 77392 V, 23 July 2010Google Scholar
  26. 26.
    Akhmetov, V., Khlamov, S., Dmytrenko, A.: Fast coordinate cross-match tool for large astronomical catalogue. Adv. Intell. Syst. Comput. 871, 3–16 (2019)Google Scholar
  27. 27.
    Parimucha, Š., et al.: CoLiTecVS–a new tool for an automated reduction of photometric observations. Contrib. Astron. Obs. Skalnaté Pleso 49, 151–153 (2019)Google Scholar
  28. 28.
    IAU Minor Planet Center. Accessed 21 June 2019
  29. 29.
    HORIZONS System. Accessed 21 August 2019
  30. 30.
    Savanevych V., Dikov Eu., Bryukhovetsky A., Vlasenko V., Akhmetov V., Khlamov S., Khramtsov V., Movsesian I.: New approach to select reference stars for astrometric reduction of CCD-frames. In Proceedings International Scientific Conference “Computer sciences and information technologies” (CSIT-2019), vol. 2, pp. 110–113 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Science Department of EOS Data AnalyticsKharkivUkraine
  2. 2.V. N. Karazin, Kharkiv National UniversityKharkivUkraine
  3. 3.Kharkiv National University of Radio ElectronicsKharkivUkraine

Personalised recommendations