Advertisement

Modeling of Lightning Flashes in Thunderstorm Front by Constructive Production of Fractal Time Series

  • Viktor ShynkarenkoEmail author
  • Kostiantyn LytvynenkoEmail author
  • Robert ChyhirEmail author
  • Iryna NikitinaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1080)

Abstract

Using the tools of structural-synthesizing modeling, a set of constructors was developed. Implementing parametric multi-character constructors allows to form fractal sequences of characters. Constructor-converter from the character string to time series creates fractal time series, which determine the location, magnitude and decay rate of lightning discharges. Model video images of lightnings in the thunderstorm front are formed in accordance with the implementation of the constructor-assembler. All constructors are developed on the basis of the generalized constructor that was previously presented and repeatedly tested. The model adequacy of the model is confirmed by comparing the video image of the model with the image, what was obtained by NASA satellite. This approach can be the basis for solving the dynamic problems on lightning protection of engineering constructions and civil objects, and development of strategy of aircraft behavior in order to mitigate the risks of lightning strokes in the conditions of movement in the thunderstorm front.

Keywords

L-system Constrictive-synthesizing modeling Fractal Lightning activity Lightning flash Thunderstorm front Time series 

References

  1. 1.
    Rodger, C.J., Werner, S., Brundell, J.B., Lay, E.H.: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study. Ann. Geophys. 24, 3197–3214 (2006)CrossRefGoogle Scholar
  2. 2.
    Kraaij, T., Cowling, R.M., van Wilgen, B.W.: Lightning and fire weather in eastern coastal fynbos shrublands: seasonality and long-term trends. Int. J. Wildland Fire 22, 288–295 (2013).  https://doi.org/10.1071/WF11167CrossRefGoogle Scholar
  3. 3.
    Pack, S., Piantini, A.: Lightning research and lightning protection technology. Electr. Power Syst. Res. 113, 1–2 (2014)CrossRefGoogle Scholar
  4. 4.
    Williams, E.R.: Lightning and climate: a review. Atmos. Res. 76(1–4), 272–287 (2005).  https://doi.org/10.1016/j.atmosres.2004.11.014CrossRefGoogle Scholar
  5. 5.
    Yair, Y., Lynn, B., Price, C., Kotroni, V., Lagouvardos, K., Morin, E., Mugnai, A., Llasat, M.d.C.: Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. J. Geophys. Res. 115 (2010). D04205.  https://doi.org/10.1029/2008JD010868
  6. 6.
    Sátoria, G., Williams, E., Lempergeraams, I.: Variability of global lightning activity on the ENSO time scale. Atmos. Res. 91(2–4), 500–507 (2009).  https://doi.org/10.1016/j.atmosres.2008.06.014CrossRefGoogle Scholar
  7. 7.
    Devendraa, S., RameshKumara, P., Kulkarnia, M.N., Singhb, R.P., Singhc, A.K.: Lightning, convective rain and solar activity — over the South/Southeast Asia. Atmos. Res. 120–121, 99–111 (2013).  https://doi.org/10.1016/j.atmosres.2012.07.026CrossRefGoogle Scholar
  8. 8.
    Galanaki, E., Kotroni, V., Lagouvardos, K., Argiriou, A.: A ten-year analysis of cloud-to-ground lightning activity over the Eastern Mediterranean region. Atmos. Res. 166, 213–222 (2015)CrossRefGoogle Scholar
  9. 9.
    Ahrens, M.: Lightning fires and lightning strikes. In: National Fire Protection Association, Quincy, 31 p. (2013)Google Scholar
  10. 10.
    Fuchs, B.R., Bruning, E.C., Rutledge, S.A., Carey, L.D., Krehbiel, P.R., Rison, W.: Climatological analyses of LMA data with an open-source lightning flash-clustering algorithm. J. Geophys. Res. Atmos. 121(14), 8625–8648 (2016)CrossRefGoogle Scholar
  11. 11.
    Shynkarenko, V.I., Ilman, V.M.: Constructive-synthesizing structures and their grammatical interpretations. Part I. Generalized formal constructive-synthesizing structure. Cybern. Syst. Anal. 50(5), 655–662 (2014).  https://doi.org/10.1007/s10559-014-9655-zCrossRefzbMATHGoogle Scholar
  12. 12.
    Shynkarenko, V.I., Ilman, V.M.: Constructive-synthesizing structures and their grammatical interpretations. Part II. Refining transformations. Cybern. Syst. Anal. 50(6), 829–841 (2014).  https://doi.org/10.1007/s10559-014-9674-9CrossRefzbMATHGoogle Scholar
  13. 13.
    Shynkarenko, V.I., Ilman, V.M., Skalozub, V.V.: Structural models of algorithms in problems of applied programming. I. Formal algorithmic structures. Cybern. Syst. Anal. 45(3), 329–339 (2009).  https://doi.org/10.1007/s10559-009-9118-0CrossRefzbMATHGoogle Scholar
  14. 14.
    Skalozub, V., Illman, V., Shynkarenko, V.: Development of ontological support of constructive-synthesizing modeling of information systems. Eastern-Eur. J. Enterp. Technol. 6/4(90), 58–69 (2017).  https://doi.org/10.15587/1729-4061.2017.119497CrossRefGoogle Scholar
  15. 15.
    Lindenmayer, A.: Mathematical models for cellular interaction in development. J. Theor. Biol. 18, 280–315 (1968)CrossRefGoogle Scholar
  16. 16.
  17. 17.
  18. 18.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dnipro National University of Railway Transport named after academician V. LazaryanDniproUkraine

Personalised recommendations