Phase Behaviour of Colloidal Superballs Mixed with Non-adsorbing Polymers
Abstract
Inspired by experimental work on colloidal cuboid–polymer dispersions [Rossi et al., Soft Matter, 2011, 7, 4139–4142] we have theoretically studied the phase behaviour of such mixtures. To that end, free volume theory was applied to predict the phase behaviour of mixtures of superballs and non-adsorbing polymer chains in a common solvent. Closed expressions for the thermodynamic properties of a suspension of hard colloidal superballs have been derived, accounting for fluid (F), face centred cubic (FCC) and simple cubic (SC) phase states. Even though these expressions are approximate for the solid phases, the hard superballs phase diagram semi-quantitatively matches with more evolved methods. The theory developed for the cuboid–polymer mixture reveals a rich phase behaviour, which includes not only isostructural F\(_1\)–F\(_2\) coexistence, but also SC\(_1\)–SC\(_2\) coexistence, several triple coexistences, and even a quadruple phase coexistence region (F\(_1\)–F\(_2\)–SC–FCC). The model proposed offers a tool to assess the stability of cuboid–polymer mixtures in terms of the colloid-to-polymer size ratio and superball shape.
References
- 1.Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, D.J. Norris, Nature 414, 289 (2001). https://doi.org/10.1038/35104529
- 2.J.-M. Meijer, A. Pal, S. Ouhajji, H.N.W. Lekkerkerker, A.P. Philipse, A.V. Petukhov, Nat. Commun. 8, 14352 (2017). https://doi.org/10.1038/ncomms14352
- 3.J.W.J. de Folter, E.M. Hutter, S.I.R. Castillo, K.E. Klop, A.P. Philipse, W.K. Kegel, Langmuir 30, 955 (2014). https://doi.org/10.1021/la402427q
- 4.B.G. Prevo, E.W. Hon, O.D. Velev, J. Mater. Chem. 17, 791 (2007). https://doi.org/10.1039/B612734G
- 5.S.I.R. Castillo, D.M.E. Thies-Weesie, A.P. Philipse, Phys. Rev. E 91, 022311 (2015). https://doi.org/10.1103/PhysRevE.91.022311
- 6.L. Rossi, S. Sacanna, W.T.M. Irvine, P.M. Chaikin, D.J. Pine, A.P. Philipse, Soft Matter 7, 4139 (2011). https://doi.org/10.1039/C0SM01246G
- 7.J.R. Royer, G.L. Burton, D.L. Blair, S.D. Hudson, Soft Matter 11, 5656 (2015)ADSCrossRefGoogle Scholar
- 8.F. Dekker, R. Tuinier, A.P. Philipse, Colloids Interfaces 2, 44 (2018), https://www.mdpi.com/2504-5377/2/4/44
- 9.A.H. Barr, IEEE Comput. Graph. Appl. 1, 11 (1981). https://doi.org/10.1109/MCG.1981.1673799
- 10.Y. Jiao, F.H. Stillinger, S. Torquato, Phys. Rev. E 79, 041309 (2009). https://doi.org/10.1103/PhysRevE.79.041309
- 11.R. Ni, A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Soft Matter 8, 8826 (2012). https://doi.org/10.1039/C2SM25813G
- 12.J.-M. Meijer, F. Hagemans, L. Rossi, D.V. Byelov, S.I. Castillo, A. Snigirev, I. Snigireva, A.P. Philipse, A.V. Petukhov, Langmuir 28, 7631 (2012). https://doi.org/10.1021/la3007052
- 13.R.D. Batten, F.H. Stillinger, S. Torquato, Phys. Rev. E 81, 061105 (2010). https://doi.org/10.1103/PhysRevE.81.061105
- 14.U. Agarwal F.A. Escobedo, Nat. Mater. 10, 230 (2011). https://doi.org/10.1038/nmat2959
- 15.L. Rossi, V. Soni, D.J. Ashton, D.J. Pine, A.P. Philipse, P.M. Chaikin, M. Dijkstra, S. Sacanna, W.T.M. Irvine, Proc. Natl. Acad. Sci. U.S.A. 112, 5286 (2015), https://www.pnas.org/content/112/17/5286?sid=c9bec40f-0b6f-4a2b-baca-636cfc3e3038
- 16.S.M. Oversteegen R. Roth, J. Chem. Phys. 122, 214502 (2005). https://doi.org/10.1063/1.1908765
- 17.E. Herold, R. Hellmann, J. Wagner, J. Chem. Phys. 147, 204102 (2017). https://doi.org/10.1063/1.5004687
- 18.A. Isihara T. Hayashida, J. Phys. Soc. Jpn. 6, 40 (1951). https://doi.org/10.1143/JPSJ.6.40
- 19.H. Hadwiger, Experientia 7, 395 (1951). https://doi.org/10.1007/BF02168922
- 20.R. Gibbons, Mol. Phys. 17, 81 (1969), https://www.tandfonline.com/doi/abs/10.1080/00268976900100811
- 21.T. Boublík, Mol. Phys. 27, 1415 (1974). https://doi.org/10.1080/00268977400101191
- 22.T. Boublík, J. Chem. Phys. 63, 4084 (1975). https://doi.org/10.1063/1.431882
- 23.T. Boublík, Mol. Phys. 42, 209 (1981), https://www.tandfonline.com/doi/abs/10.1080/00268978100100161
- 24.N.F. Carnahan K.E. Starling, J. Chem. Phys. 51, 635 (1969), https://aip.scitation.org/doi/10.1063/1.1672048
- 25.J.E. Lennard-Jones, A.F. Devonshire, Proc. R. Soc A 163, 53 (1937), https://www.jstor.org/stable/97067?seq=1#page_scan_tab_contents
- 26.M. Baus C.F. Tejero, Equilibrium Statistical Physics, 1st ed. (Springer, Heidelberg, 2008). https://doi.org/10.1007/978-3-540-74632-4
- 27.E. Velasco, L. Mederos, G. Navascués, Langmuir 14, 5652 (1998). https://doi.org/10.1021/la980126y
- 28.S.K. Kwak, T. Park, Y.-J. Yoon, J.-M. Lee, Mol. Sim. 38, 16 (2012). https://doi.org/10.1080/08927022.2011.597397
- 29.H.N.W. Lekkerkerker R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)Google Scholar
- 30.L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
- 31.A. Cuetos, M. Dennison, A. Masters, A. Patti, Soft Matter 13, 4720 (2017), https://pubs.rsc.org/en/Content/ArticleLanding/2017/SM/C7SM00726D#!divAbstract
- 32.F. Smallenburg, L. Filion, M. Marechal, M. Dijkstra, Proc. Natl. Acad. Sci. U.S.A. 109, 17886 (2012), https://www.pnas.org/content/109/44/17886
- 33.A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Phys. Rev. Lett. 111, 015501 (2013), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.015501
- 34.W.G. Hoover F.H. Ree, J. Chem. Phys. 49, 3609 (1968), https://aip.scitation.org/doi/10.1063/1.1670641
- 35.H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992). https://doi.org/10.1209/0295-5075/20/6/015
- 36.M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E 73, 041404 (2006), https://journals.aps.org/pre/abstract/10.1103/PhysRevE.73.041404
- 37.P.G. Bolhuis, M. Hagen, D. Frenkel, Phys. Rev. E 50, 4880 (1994), https://journals.aps.org/pre/abstract/10.1103/PhysRevE.50.4880
- 38.C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. E 51, 558 (1995). https://doi.org/10.1103/PhysRevE.51.558
- 39.D.J. Audus, A.M. Hassan, E.J. Garboczi, J.F. Douglas, Soft Matter 11, 3360 (2015). https://doi.org/10.1039/C4SM02869D