Advertisement

Tuning the Phase Diagram of Colloid–Polymer Mixtures

  • Álvaro González GarcíaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

A theory that predicts the phase behaviour of interacting Yukawa spheres in a solution containing non-adsorbing polymer is presented. It is found that additional Yukawa interactions beyond the hard core affect the location and presence of coexistence regions and phase states. The theoretical phase diagrams are compared with Monte Carlo simulations. The agreement between the two approaches supports the validity of the theoretical approximations made and confirm that, by choosing the parameters of the interaction potentials, tuning of the binodals is possible. The colloidal gas–liquid critical end point (CEP) characterizes the phase diagram topology. It is demonstrated how an additional Yukawa interaction shifts this CEP with respect to the hard sphere case. Provided a certain depletant–to–colloid size ratio for which a stable colloidal gas–liquid phase coexistence takes place for hard spheres, added direct Yukawa interactions turn this into a metastable gas–liquid equilibrium. The opposite case, the induction of a stable gas–liquid coexistence where only fluid–solid was present for hard spheres, is also reported.

References

  1. 1.
    H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)CrossRefGoogle Scholar
  2. 2.
    M. Dijkstra, J.M. Brader, R. Evans, J. Phys.: Condens. Matter 11, 10079 (1999)ADSGoogle Scholar
  3. 3.
    D.J. Ashton, N.B. Wilding, Phys. Rev. E, 2014, p. 031301.  https://doi.org/10.1103/PhysRevE.89.031301
  4. 4.
    M. Majka, P.F. Góra, Phys. Rev. E 90, 032303 (2014).  https://doi.org/10.1103/PhysRevE.90.032303
  5. 5.
    L. Rovigatti, N. Gnan, A. Parola, E. Zaccarelli, Soft Matter 11, 692 (2014). https://pubs.rsc.org/en/content/articlelanding/2015/sm/c4sm02218a/unauth#!divAbstract
  6. 6.
    M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E 73, 041404 (2006). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.73.041404
  7. 7.
    J. Jover, A. Galindo, G. Jackson, E.A. Müller, A.J. Haslam, Mol. Phys. 113, 2608 (2015).  https://doi.org/10.1080/00268976.2015.1047425
  8. 8.
    A. Santos, M. López de Haro, G. Fiumara, F. Saija, J. Chem. Phys. 142, 224903 (2015).  https://doi.org/10.1063/1.4922031
  9. 9.
    A. Fortini, M. Dijkstra, R. Tuinier, J. Phys.: Condens. Matter 17, 7783 (2005). http://stacks.iop.org/0953-8984/17/i=50/a=002 Google Scholar
  10. 10.
    A.R. Denton, M. Schmidt, J. Chem. Phys. 122, 244911 (2005).  https://doi.org/10.1063/1.1940055
  11. 11.
    C. Gögelein, R. Tuinier, Eur. Phys. J. E 27, 171 (2008).  https://doi.org/10.1140/epje/i2008-10367-6
  12. 12.
    K. van Gruijthuijsen, R. Tuinier, J.M. Brader, A. Stradner, Soft Matter 9, 9977 (2013).  https://doi.org/10.1039/c3sm51432c
  13. 13.
    G. Pandav, V. Pryamitsyn, V. Ganesan, Langmuir 31, 12328 (2015).  https://doi.org/10.1021/acs.langmuir.5b02885
  14. 14.
    E. Dickinson, Food Hydrocoll. 52, 497 (2016).  https://doi.org/10.1016/j.foodhyd.2015.07.029
  15. 15.
    Y. Tang, B.C. Lu, J. Chem. Phys. 99, 9828 ( 1993). https://aip.scitation.org/doi/10.1063/1.465465
  16. 16.
    A. Vrij, Pure Appl. Chem. 48, 471 (1976).  https://doi.org/10.1351/pac197648040471CrossRefGoogle Scholar
  17. 17.
    H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992).  https://doi.org/10.1209/0295-5075/20/6/015
  18. 18.
    W.G. Hoover, F.H. Ree, J. Chem. Phys. 49, 3609 ( 1968). https://aip.scitation.org/doi/10.1063/1.1670641
  19. 19.
    C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. Lett. 73, 752 (1994). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.73.752
  20. 20.
    C.P. Royall, M.E. Leunissen, A. van Blaaderen, J. Phys.: Condens. Matter 15, S3581 (2003). http://stacks.iop.org/0953-8984/15/i=48/a=017
  21. 21.
    P. Uhlmann, H. Merlitz, J.-U. Sommer, M. Stamm, Macromol. Rapid Commun. 30, 732 (2009).  https://doi.org/10.1002/marc.200900113
  22. 22.
    F. Lo Verso, L. Yelash, S.A. Egorov, K. Binder, Soft Matter 8, 4185 (2012)  https://doi.org/10.1039/c2sm06836b
  23. 23.
    M.T. Dang, A.V. Verde, V.D. Nguyen, P.G. Bolhuis, P. Schall, J. Chem. Phys. 139, 094903 (2013).  https://doi.org/10.1063/1.4819896
  24. 24.
    R. Tuinier, G.J. Fleer, J. Phys. Chem. B 110, 20540 (2006). https://pubs.acs.org/doi/abs/10.1021/jp063650j
  25. 25.
    G.J. Fleer, R. Tuinier, Adv. Colloid Interface Sci. 143, 1 (2008)  https://doi.org/10.1016/j.cis.2008.07.001
  26. 26.
    R. Tuinier, M.S. Feenstra, Langmuir 30, 13121 (2014).  https://doi.org/10.1021/la5023856
  27. 27.
    M. Dijkstra, Phys. Rev. E 66, 021402 (2002).  https://doi.org/10.1103/PhysRevE.66.021402

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry and Debye InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations