Advertisement

Meta-learning Based Evolutionary Clustering Algorithm

  • Dmitry Tomp
  • Sergey MuravyovEmail author
  • Andrey Filchenkov
  • Vladimir Parfenov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11871)

Abstract

In this work, we address the hard clustering problem. We present a new clustering algorithm based on evolutionary computation searching a best partition with respect to a given quality measure. We present 32 partition transformation that are used as mutation operators. The algorithm is a \((1+1)\) evolutionary strategy that selects a random mutation on each step from a subset of preselected mutation operators. Such selection is performed with a classifier trained to predict usefulness of each mutation for a given dataset. Comparison with state-of-the-art approach for automated clustering algorithm and hyperparameter selection shows the superiority of the proposed algorithm.

Keywords

Clustering Evolutionary clustering Meta-learning Evolutionary computation 

Notes

Acknowledgments

The authors would like to thank Maxim Buzdalov for useful comments. The research was financially supported by The Russian Science Foundation, Agreement 17-71-30029.

References

  1. 1.
    Ma, P.C., Chan, K.C., Yao, X., Chiu, D.K.: An evolutionary clustering algorithm for gene expression microarray data analysis. Trans. Evol. Comp. 10, 296–314 (2006)CrossRefGoogle Scholar
  2. 2.
    Punj, G., Stewart, D.W.: Cluster analysis in marketing research: review and suggestions for application. J. Mark. Res. 20(2), 134–148 (1983)CrossRefGoogle Scholar
  3. 3.
    Farseev, A., Samborskii, I., Filchenkov, A., Chua, T.-S.: Cross-domain recommendation via clustering on multi-layer graphs. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 195–204. ACM (2017)Google Scholar
  4. 4.
    Kleinberg, J.: An impossibility theorem for clustering. In: Proceedings of the 15th International Conference on Neural Information Processing Systems, NIPS 2002, pp. 463–470. MIT Press, Cambridge (2002)Google Scholar
  5. 5.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  7. 7.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  8. 8.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)CrossRefGoogle Scholar
  9. 9.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Moulavi, D., Jaskowiak, P.A., Campello, R.J.G.B., Zimek, A., Sander, J.: Density-based clustering validation, April 2014Google Scholar
  11. 11.
    Arbelaitz, O., Gurrutxaga, I., Muguerza, J., PéRez, J.M., Perona, I.N.: An extensive comparative study of cluster validity indices. Pattern Recogn. 46, 243–256 (2013)CrossRefGoogle Scholar
  12. 12.
    Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., De Carvalho, A.C.P.L.F.: A survey of evolutionary algorithms for clustering. Trans. Syst. Man Cyber. Part C 39, 133–155 (2009)CrossRefGoogle Scholar
  13. 13.
    Ferrari, D.G., de Castro, L.N.: Clustering algorithm selection by meta-learning systems. Inf. Sci. 301, 181–194 (2015)CrossRefGoogle Scholar
  14. 14.
    Muravyov, S., Filchenkov, S.: Meta-learning system for automated clustering. In: AutoML@ PKDD/ECML, pp. 99–101 (2017)Google Scholar
  15. 15.
    Shalamov, V., Filchenkov, A., Shalyto, A.: Heuristic and metaheuristic solutions of pickup and delivery problem for self-driving taxi routing. Evol. Syst. 10, 11 (2017)Google Scholar
  16. 16.
    Cole, R.: Clustering with genetic algorithms. Ph.D. thesis (1998)Google Scholar
  17. 17.
    Hruschka, E.R., Ebecken, N.F.F.: A genetic algorithm for cluster analysis. Intell. Data Anal. 7, 15–25 (2003)CrossRefGoogle Scholar
  18. 18.
    Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. Trans. Sys. Man Cyber. Part B 28, 301–315 (1998)CrossRefGoogle Scholar
  19. 19.
    Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. Trans. Evol. Comp 11, 56–76 (2007)CrossRefGoogle Scholar
  20. 20.
    Muravyov, S., Antipov, D., Buzdalova, A., Filchenkov, A.: Efficient computation of fitness function for evolutionary clustering. MENDEL 25, 87–94 (2019)CrossRefGoogle Scholar
  21. 21.
    Pillay, N., Qu, R.: Hyper-Heuristics: Theory and Applications. Springer, Switzerland (2018).  https://doi.org/10.1007/978-3-319-96514-7CrossRefGoogle Scholar
  22. 22.
    Woodward, J.R., Swan, J.: The automatic generation of mutation operators for genetic algorithms. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 67–74. ACM (2012)Google Scholar
  23. 23.
    Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)CrossRefGoogle Scholar
  24. 24.
    Shalamov, V., Efimova, V., Muravyov, S., Filchenkov, A.: Reinforcement-based method for simultaneous clustering algorithm selection and its hyperparameters optimization. Procedia Comput. Sci. 136, 144–153 (2018)CrossRefGoogle Scholar
  25. 25.
    Hutter, F., Hoos, H., Leyton-Brown, H.: An evaluation of sequential model-based optimization for expensive blackbox functions. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1209–1216. ACM (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dmitry Tomp
    • 1
    • 2
  • Sergey Muravyov
    • 1
    • 2
    Email author
  • Andrey Filchenkov
    • 1
    • 2
  • Vladimir Parfenov
    • 2
  1. 1.Machine Learning LabITMO UniversitySt. PetersburgRussia
  2. 2.Information Technologies and Programming FacultyITMO UniversitySt. PetersburgRussia

Personalised recommendations