Advertisement

Superlinear Speedup of Parallel Population-Based Metaheuristics: A Microservices and Container Virtualization Approach

  • Hatem KhalloofEmail author
  • Phil Ostheimer
  • Wilfried Jakob
  • Shadi Shahoud
  • Clemens Duepmeier
  • Veit Hagenmeyer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11871)

Abstract

Population-based metaheuristics such as Evolutionary Algorithms (EAs) can require massive computational power for solving complex and large scale optimization problems. Hence, the parallel execution of EAs attracted the attention of researchers as a feasible solution in order to reduce the computation time. Several distributed frameworks and approaches utilizing different hardware and software technologies have been introduced in the literatures. Among them, the parallelization of EAs in cluster and cloud environments exploiting modern parallel computing techniques seems to be a promising approach. In the present paper, the parallel performance in terms of speedup using microservices, container virtualization and the publish/subscribe messaging paradigm to parallelize EAs based on the Coarse-Grained Model (so-called Island Model) is introduced. Four different communication topologies with scalable number of islands ranges between 1 and 120 are analyzed in order to show that a partial linear/superlinear speedup is achievable for the proposed approach.

Keywords

Parallel EAs Speedup Superlinear Coarse-Grained Model Microservices Container Cluster Parallel computing Scalability 

References

  1. 1.
    Abdelhafez, A., Alba, E.: Speed-up of synchronous and asynchronous distributed genetic algorithms: a first common approach on multiprocessors. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2677–2682. IEEE (2017)Google Scholar
  2. 2.
    Abdelhafez, A., Alba, E., Luque, G.: Performance analysis of synchronous and asynchronous distributed genetic algorithms on multiprocessors. Swarm Evol. Comput. 49, 147–157 (2019)CrossRefGoogle Scholar
  3. 3.
    Alba, E., et al.: Efficient parallel LAN/WAN algorithms for optimization. The mallba project. Parallel Comput. 32(5–6), 415–440 (2006)CrossRefGoogle Scholar
  4. 4.
    Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Inf. Process. Lett. 82(1), 7–13 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alba, E., Troya, J.M.: Analyzing synchronous and asynchronous parallel distributed genetic algorithms. Future Gener. Comput. Syst. 17(4), 451–465 (2001)CrossRefGoogle Scholar
  6. 6.
    Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the 18–20 April 1967, Spring Joint Computer Conference, pp. 483–485. ACM (1967)Google Scholar
  7. 7.
    Arenas, M.G., et al.: A framework for distributed evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45712-7_64CrossRefGoogle Scholar
  8. 8.
    Belding, T.C.: The distributed genetic algorithm revisited. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 114–121 (1995)Google Scholar
  9. 9.
    Blume, C., Jakob, W.: GLEAM - an evolutionary algorithm for planning and control based on evolution strategy. In: GECCO Late Breaking Papers, pp. 31–38 (2002)Google Scholar
  10. 10.
    Blume, C., Jakob, W.: GLEAM - General Learning Evolutionary Algorithm and Method: Ein evolutionärer Algorithmus und seine Anwendungen, vol. 32. KIT Scientific Publishing (2009)Google Scholar
  11. 11.
    Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. J. Heuristics 10(3), 357–380 (2004)CrossRefGoogle Scholar
  12. 12.
    Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et systems repartis 10(2), 141–171 (1998)Google Scholar
  13. 13.
    Cantú-Paz, E.: Topologies, migration rates, and multi-population parallel genetic algorithms. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, pp. 91–98 (1999) Google Scholar
  14. 14.
    Fogarty, T.C., Huang, R.: Implementing the genetic algorithm on transputer based parallel processing systems. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 145–149. Springer, Heidelberg (1991).  https://doi.org/10.1007/BFb0029745CrossRefGoogle Scholar
  15. 15.
    Fogel, G.B., Corne, D.W.: Evolutionary Computation in Bioinformatics. Elsevier (2002)Google Scholar
  16. 16.
    Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    García-Valdez, M., Merelo, J.J.: evospace-js: asynchronous pool-based execution of heterogeneous metaheuristics. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1202–1208 (2017)Google Scholar
  18. 18.
    Khalloof, H., Ostheimer, P., Jakob, W., Shahoud, S., Duepmeier, C., Hagenmeyer, V.: A distributed modular scalable and generic framework for parallelizing population-based metaheuristics. In: Parallel Processing and Applied Mathematics (PPAM). Springer (2019, accepted)Google Scholar
  19. 19.
    Khalloof, H., et al.: A generic distributed microservices and container based framework for metaheuristic optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1363–1370. ACM (2018)Google Scholar
  20. 20.
    Liu, Y.Y., Wang, S.: A scalable parallel genetic algorithm for the generalized assignment problem. Parallel Comput. 46, 98–119 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, Inc. (2015)Google Scholar
  22. 22.
    Salza, P., Ferrucci, F.: An Approach for Parallel Genetic Algorithms in the Cloud using Software Containers. Computing Research Repository (CoRR), pp. 1–7 (2016)Google Scholar
  23. 23.
    Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hatem Khalloof
    • 1
    Email author
  • Phil Ostheimer
    • 1
  • Wilfried Jakob
    • 1
  • Shadi Shahoud
    • 1
  • Clemens Duepmeier
    • 1
  • Veit Hagenmeyer
    • 1
  1. 1.Institute of Automation and Applied Informatics (IAI)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations