IoT Data Management, Data Aggregation and Dissemination

  • T. Joshva DevadasEmail author
  • S. Thayammal
  • A. Ramprakash
Part of the Intelligent Systems Reference Library book series (ISRL, volume 174)


The Internet of Things (IoT) paves the way to interact with the smart objects namely sensors, hardware, circuits and software. Research in IoT ensures that collecting, processing and distributing the data needs to be improved to carryout data aggregation, processing and dissemination tasks of IoT data management. Data Processing focuses on the characteristics Velocity, Volume, Variety, Variability, and Veracity. IoT Data Management may further be categorized as Communication, Storage and Processing. Data communication involves data processing among objects, sensor data and hardware. To store the data, Cloud or distributed storage is used and processing involves filtering and analytics. Data dissemination distributes the processed data to end users. Message-delay in multi-hop massive IoT network is significantly optimized. This chapter enumerates the IoT data management frameworks, challenges and issues. Also, deployment of IoT Data management for smart home and smart city is described.


IOT data management Data aggregation Dissemination Data processing Data communication Data storage 


  1. 1.
    Cooper, J., James, A.: Challenges for database management in the Internet of Things. IETE Techn. Rev. 26, 320–329 (2009)CrossRefGoogle Scholar
  2. 2.
    Sabrina, B., Djallel, E.B., Azeddine, B., Homero, T.C.: Big data challenges and data aggregation strategies in wireless sensor networks. IEEE Access Spec. Sect. Real-Time Edge Anal. Big Data Int. Things 6, 20558–20571 (2018)Google Scholar
  3. 3.
    Tole, A.A.: Big data challenges. Database Syst. J. 4, 31–40 (2013)Google Scholar
  4. 4.
    Catalin, C., Monica, C.: Large data management in IoT application. In: IEEE Conference, pp. 1–5 (2016)Google Scholar
  5. 5.
    Abu, E.M.: Data management for the Internet of Things: green directions. IEEE, pp. 386–390 (2012)Google Scholar
  6. 6.
    Yuchao, Z., Suparna, D., Wei, W., Klaus, M.: Enabling query of frequently updated data from mobile sensing sources. Inst. Commun., pp. 946–952 (2014)Google Scholar
  7. 7.
    Mervat, A.E., Mohammad, H., Najah, A.A.: Data management for the Internet of Things: design primitives and solution. J. Sens. 13, 15582–15612 (2013)CrossRefGoogle Scholar
  8. 8.
    Efficient storage of multi-sensor object-tracking data: Xingjun, H., Hao, H., Peiquan, J., Lihua. Y. IEEE Trans. Parall. Distrib. Syst. 99, 1–5 (2001)Google Scholar
  9. 9.
    Lu, T., Fang, J., Cong, L.: A unified storage and query optimization framework for sensor data. In: Web Information System and Application Conference, vol. 13: 229–234 (2015)Google Scholar
  10. 10.
    Qin, Q., Sheng, Q.Z., Falkner, N.J.K., Dustdar, S., Wang, H., Vasilakos, V.A.: When things matter: a data-centric view of the Internet of Things. CoRR 1, 1–10 (2014)Google Scholar
  11. 11.
    Kristi, M., Matt, M., Maarit, M., Boya, D.: Data management life cycle. PRC 1, 17–84 (2018)Google Scholar
  12. 12.
    Vinod, V.N., Nanda Kishor, R.: Getting the most out of IoT with an effective data lifecycle management strategy. White paperGoogle Scholar
  13. 13.
    Heinzelman, W.R., Chandrakasan, A.P., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wireless Commun. 1, 660–670 (2002)CrossRefGoogle Scholar
  14. 14.
    Ramesh, R., Pramod, K.V.: Data aggregation techniques in sensor networks: a survey. SURFACE 1, 1–30 (2008)Google Scholar
  15. 15.
    Paruchuri, V., Durresi, A., Dash, D.S., Jain, R.: Optimal flooding protocol for routing in ad-hoc networks. In: IEEE Wireless Communications and Networking Conference, pp. 93–102Google Scholar
  16. 16.
    Jelasity, M., Babaoglu, O.: T-Man: Gossip-Based Overlay Topology Management. Engineering Self-Organising Systems, pp. 1–15. Springer (2006)Google Scholar
  17. 17.
    Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23, 219–252 (2005)CrossRefGoogle Scholar
  18. 18.
    Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., Van Steen, M.: Gossip-based peer sampling. ACM Trans. Comput. Syst. (TOCS) 25, 1–8 (2007)CrossRefGoogle Scholar
  19. 19.
    Younis, O., Fahmy, S.: HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mob. Comput. 3, 366–379 (2004)CrossRefGoogle Scholar
  20. 20.
    Chatterjea, S., Havinga, P.: A Dynamic data aggregation scheme for wireless sensor networks. Proc. Progr. Res. Integr. Syst. Circ. 1, 1–12 (2003)Google Scholar
  21. 21.
    Payal, J., Anu, C.: The comparison between leach protocol and pegasis protocol based on lifetime of wireless sensor networks. Int. J. Comput. Sci. Mob. Comput. 6, 15–19 (2017)Google Scholar
  22. 22.
    Halvorsen, H.P., Jonsaas, A., Mylvaganam, S., Timmerberg, J., Thiriet, J.C.: Case studies in IoT-smart-home solutions pedagogical perspective with industrial applications and some latest developments. In: The 27th EAEEIE Annual Conference, pp. 1–8 (2017)Google Scholar
  23. 23.
    Ruben, C.H., Rafael, T., Maristela, T.H., Robson, O.A., Luis, J.G.V., Kim, T.H.: Distributed data service for data management in Internet of Things middleware. J. Sens. 17, 1–25 (2017)CrossRefGoogle Scholar
  24. 24.
    Yasir, M., Farhan, A., Ibrar, Y., Asma, A., Muhammad, I., Sghaier, G.: Internet-of-Things based smart cities: recent advances and challenges. IEEE Commun. Mag. 1, 1–14 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • T. Joshva Devadas
    • 1
    Email author
  • S. Thayammal
    • 2
  • A. Ramprakash
    • 2
  1. 1.Department of CSEKalasalingam Academy of Research and EducationKrishnankoilIndia
  2. 2.Department of ECEKalasalingam Institute of TechnologyKrishnankoilIndia

Personalised recommendations