Advertisement

Towards the Development of a Smart Energy Grid

  • Moamin A. MahmoudEmail author
  • Alicia Y. C. Tang
  • Andino Maseleno
  • Fung-Cheng Lim
  • Hairoladenan Kasim
  • Christine Yong
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1073)

Abstract

Current electricity transmission and distribution networks can classified as conventional electricity networks because they have not been able to provide excellent services and present real-time data. This network has not been able to provide reliability, safety and efficiency in supplying electrical energy even not yet have the flexibility to be integrated with the generation of renewable energy or micro-grid. In this paper, a comprehensive review has been conducted to map the literature studies to a coherent taxonomy of Smart Energy grid. The fundamentals of smart grid presented in this paper can benefit readers who wish to embark in smart energy grid research and applications development.

Keywords

Smart energy grid Power system Renewable energy Internet of Things 

Notes

Acknowledgments

This work is sponsored by Tenaga Nasional Berhad (TNB) under TNB R&D Seeding Fund Scheme No. TC-RD-18-19. We also gratefully appreciate Universiti Tenaga Nasional & Uniten R&D for securing and managing the fund.

References

  1. 1.
    Aktas, A., Erhan, K., Ozdemir, S., Ozdemir, E.: Experimental investigation of a new smart energy management algorithm for a hybrid energy storage system in smart grid applications. Electr. Power Syst. Res. 144, 185–196 (2017)CrossRefGoogle Scholar
  2. 2.
    Gungor, V.C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., Hancke, G.P.: Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inf. 7(4), 529–539 (2011)CrossRefGoogle Scholar
  3. 3.
    Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J.E., Hvelplund, F., Mathiesen, B.V.: 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 68, 1–11 (2014)CrossRefGoogle Scholar
  4. 4.
    Botte, B., Cannatelli, V., Rogai, S.: The Telegestore project in ENEL’s metering system. In: CIRED 2005–18th International Conference and Exhibition on Electricity Distribution, pp. 1–4. IET, June 2005Google Scholar
  5. 5.
    Yu, X., Xue, Y.: Smart grids: a cyber–physical systems perspective. Proc. IEEE 104(5), 1058–1070 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Amin, S.M., Wollenberg, B.F.: Toward a smart grid: power delivery for the 21st century. IEEE Power Energy Mag. 3(5), 34–41 (2005)CrossRefGoogle Scholar
  7. 7.
    Gungor, V.C., Lu, B., Hancke, G.P.: Opportunities and challenges of wireless sensor networks in smart grid. IEEE Trans. Ind. Electron. 57(10), 3557–3564 (2010)CrossRefGoogle Scholar
  8. 8.
    Haase, P.: Intelligrid: a smart network of power. EPRI J., 28–32 (2009)Google Scholar
  9. 9.
    National Institute of Standards and Technology. NIST framework and roadmap for smart grid interoperability standards, release 1.0 (2010). http://www.nist.gov/publicaffairs/releases/upload/smartgridinteroperabilityfinal.pdf
  10. 10.
    Gharavi, H., Ghafurian, R. (Eds.). (2011). Smart grid: The electric energy system of the futureGoogle Scholar
  11. 11.
    Farhangi, H.: The path of the smart grid. IEEE power Energy Mag. 8(1), 18–28 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Momoh, J.A.: Smart grid design for efficient and flexible power networks operation and control. In: 2009 IEEE/PESPower Systems Conference and Exposition, (PSCE 2009), pp. 1–8. IEEE, March 2009Google Scholar
  13. 13.
    Bu, S., Yu, F.R., Cai, Y., Liu, X.P.: When the smart grid meets energy-efficient communications: green wireless cellular networks powered by the smart grid. IEEE Trans. Wirel. Commun. 11(8), 3014–3024 (2012)Google Scholar
  14. 14.
    Wang, C., Li, P.: Development and challenges of distributed generation, the micro-grid and smart distribution system. Autom. Electric Power Syst. 2(004) (2010)Google Scholar
  15. 15.
    Kanchev, H., Lu, D., Colas, F., Lazarov, V., Francois, B.: Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications. IEEE Trans. Ind. Electron. 58(10), 4583–4592 (2011)CrossRefGoogle Scholar
  16. 16.
    Battaglini, A., Lilliestam, J., Haas, A., Patt, A.: Development of supersmart grids for a more efficient utilisation of electricity from renewable sources. J. Clean. Prod. 17(10), 911–918 (2009)CrossRefGoogle Scholar
  17. 17.
    Aghaei, J., Alizadeh, M.I.: Demand response in smart electricity grids equipped with renewable energy sources: a review. Renew. Sustain. Energy Rev. 18, 64–72 (2013)CrossRefGoogle Scholar
  18. 18.
    Siano, P.: Demand response and smart grids—a survey. Renew. Sustain. Energy Rev. 30, 461–478 (2014)CrossRefGoogle Scholar
  19. 19.
    Liang, X.: Emerging power quality challenges due to integration of renewable energy sources. IEEE Trans. Ind. Appl. 53(2), 855–866 (2016)CrossRefGoogle Scholar
  20. 20.
    Kayastha, N., Niyato, D., Hossain, E., Han, Z.: Smart grid sensor data collection, communication, and networking: a tutorial. Wirel. Commun. Mob. Comput. 14(11), 1055–1087 (2014)CrossRefGoogle Scholar
  21. 21.
    Naumann, A., Bielchev, I., Voropai, N., Styczynski, Z.: Smart grid automation using IEC 61850 and CIM standards. Control Eng. Pract. 25, 102–111 (2014)CrossRefGoogle Scholar
  22. 22.
    Ashok, A., Hahn, A., Govindarasu, M.: Cyber-physical security of wide-area monitoring, protection and control in a smart grid environment. J. Adv. Res. 5(4), 481–489 (2014)CrossRefGoogle Scholar
  23. 23.
    Rohjans, S., Dänekas, C., Uslar, M.: Requirements for smart grid ICT-architectures. In: 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), pp. 1–8. IEEE, October 2012Google Scholar
  24. 24.
    Ehsan, A., Yang, Q.: Optimal integration and planning of renewable distributed generation in the power distribution networks: a review of analytical techniques. Appl. Energy 210, 44–59 (2018)CrossRefGoogle Scholar
  25. 25.
    Albatsh, F.M., Mekhilef, S., Ahmad, S., Mokhlis, H., Hassan, M.A.: Enhancing power transfer capability through flexible AC transmission system devices: a review. Front. Inf. Technol. Electron. Eng. 16(8), 658–678 (2015)CrossRefGoogle Scholar
  26. 26.
    Flynn, D., Rather, Z., Ardal, A., D’Arco, S., Hansen, A.D., Cutululis, N.A., Smith, C.: Technical impacts of high penetration levels of wind power on power system stability. Wiley Interdisc. Rev. Energy Environ. 6(2), e216 (2017)Google Scholar
  27. 27.
    Al-Turjman, F.: 5G-enabled devices and smart-spaces in social-IoT: an overview. Future Gener. Comput. Syst. 92, 732–744 (2019)CrossRefGoogle Scholar
  28. 28.
    Saleem, Y., Crespi, N., Rehmani, M.H., Copeland, R.: Internet of things-aided Smart Grid: technologies, architectures, applications, prototypes, and future research directions. IEEE Access 7, 62962–63003 (2019)CrossRefGoogle Scholar
  29. 29.
    Malik, F.H., Lehtonen, M.: A review: agents in smart grids. Electr. Power Syst. Res. 131, 71–79 (2016)CrossRefGoogle Scholar
  30. 30.
    Mahmoud, M.A., Ramli, R., Azman, F., Grace, J.: A development methodology framework of smart manufacturing systems (Industry 4.0). MySEC (2018)Google Scholar
  31. 31.
    Ahmad, A., Zaliman, M., Yusof, M., Ahmad, M.S., Ahmed, M., Mustapha, A.: Resolving conflicts between personal and normative goals in normative agent systems. In: 2011 7th International Conference on Information Technology in Asia 12 Jul 2011, pp. 1–6. IEEE (2011)Google Scholar
  32. 32.
    Ahmed, M., Ahmad, M.S., Yusoff, M.Z.: Modeling agent-based collaborative process. In: International Conference on Computational Collective Intelligence 10 Nov 2010, pp. 296–305. Springer, Heidelberg (2010)Google Scholar
  33. 33.
    Jassim, O.A., Mahmoud, M.A., Ahmad, M.S.: A multi-agent framework for research supervision management. In: Distributed Computing and Artificial Intelligence, 12th International Conference, pp. 129–136. Springer, Cham (2015)Google Scholar
  34. 34.
    Mahmoud, M.A., Ahmad, M.S., Ahmad, A., Yusoff, M.Z., Mustapha, A.: A norms mining approach to norms detection in multi-agent systems. In: 2012 International Conference on Computer & Information Science (ICCIS) 12 June 2012, vol. 1, pp. 458–463. IEEE (2012)Google Scholar
  35. 35.
    Ahmed, M., Ahmad, M.S., Yusoff, M.Z.: Mitigating human-human collaboration problems using software agents. In: KES International Symposium on Agent and Multi-Agent Systems: Technologies and Applications, 23 June 2010, pp. 203–212. Springer, Heidelberg (2010)Google Scholar
  36. 36.
    Mahmoud, M.A., Ahmad, M.S., Yusoff, M.Z.: A norm assimilation approach for multi-agent systems in heterogeneous communities. In: Asian Conference on Intelligent Information and Database Systems 14 March 2016, pp. 354–363. Springer, Heidelberg (2016)Google Scholar
  37. 37.
    Mahmoud, M.A., Ahmad, M.S., Yusoff, M.Z., Idrus, A.: Automated multi-agent negotiation framework for the construction domain. In: Distributed Computing and Artificial Intelligence, 12th International Conference 2015, pp. 203–210. Springer, Cham (2015)Google Scholar
  38. 38.
    Mahmoud, M.A., Mustapha, A., Ahmad, M.S., Ahmad, A., Yusoff, M.Z., Hamid, N.H.: Potential norms detection in social agent societies. In: Distributed Computing and Artificial Intelligence 2013, pp. 419–428. Springer, Cham (2013)Google Scholar
  39. 39.
    Mahmoud, M., Ahmad, M.S., Yusoff, M.Z.: Development and implementation of a technique for norms-adaptable agents in open multi-agent communities. J. Syst. Sci. Complex. 29(6), 1519–1537 (2016)CrossRefGoogle Scholar
  40. 40.
    Mostafa, S.A., Ahmad, M.S., Annamalai, M., Ahmad, A., Gunasekaran, S.S.: A dynamically adjustable autonomic agent framework. In: Advances in Information Systems and Technologies 2013, pp. 631–642. Springer, Heidelberg (2013)Google Scholar
  41. 41.
    Mostafa, S.A., Darman, R., Khaleefah, S.H., Mustapha, A., Abdullah, N., Hafit, H.: A general framework for formulating adjustable autonomy of multi-agent systems by fuzzy logic. In: KES International Symposium on Agent and Multi-Agent Systems: Technologies and Applications 20 June 2018, pp. 23–33. Springer, Cham (2018)Google Scholar
  42. 42.
    Mostafa, S.A., Ahmad, M.S., Ahmad, A., Annamalai, M., Gunasekaran, S.S.: A flexible human-agent interaction model for supervised autonomous systems. In: 2016 2nd International Symposium on Agent, Multi-Agent Systems and Robotics (ISAMSR) 23 August 2016, pp. 106–111. IEEE (2016)Google Scholar
  43. 43.
    Mostafa, S.A., Ahmad, M.S., Annamalai, M., Ahmad, A., Gunasekaran, S.S.: A conceptual model of layered adjustable autonomy. In: Advances in Information Systems and Technologies 2013, pp. 619–630. Springer, Heidelberg (2013)Google Scholar
  44. 44.
    Mostafa, S.A., Ahmad, M.S., Ahmad, A., Annamalai, M., Mustapha, A.: A dynamic measurement of agent autonomy in the layered adjustable autonomy model. In: Recent Developments in Computational Collective Intelligence 2014, pp. 25–35. Springer, Cham (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Moamin A. Mahmoud
    • 1
    Email author
  • Alicia Y. C. Tang
    • 1
  • Andino Maseleno
    • 1
  • Fung-Cheng Lim
    • 2
  • Hairoladenan Kasim
    • 2
  • Christine Yong
    • 3
  1. 1.Institute of Informatics and Computing in EnergyUniversiti Tenaga NasionalKajangMalaysia
  2. 2.College of Computing and InformaticsUniversiti Tenaga NasionalKajangMalaysia
  3. 3.ICT DivisionTenaga Nasional BerhadKuala LumpurMalaysia

Personalised recommendations