Advertisement

Small and Bandwidth Efficient Multi-band Microstrip Patch Antennas for Future 5G Communications

  • Abdulguddoos S. A. GaidEmail author
  • Osaid A. S. QaidEmail author
  • Moheeb A. A. AmeerEmail author
  • Fadi F. M. QaidEmail author
  • Belal S. A. AhmedEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1073)

Abstract

In this paper, two multi-band microstrip patch antennas are proposed for 5G mobile devices. The proposed antennas have low profile structure. The first antenna is tri-band circular-shaped integrated on FR-4 epoxy with overall dimensions of 8 × 7.6 × 0.508 mm3. It operates at 40/50/64 GHz with a maximum gain of 5.19/5.23/8.269 dB respectively. The obtained bandwidths of this antenna are 2/9/5.83 GHz at 40/50/64 GHz respectively. The second one is a rectangular-shaped dual-band antenna printed on Rogers RT5880 with overall dimensions of 10 × 10.22 × 0.78 mm3. It operates at 28/39 GHz with a maximum gain of 7.73/7.02 dB respectively, and the achievable bandwidths are 2.19/2.84 GHz at 28/39 GHz respectively. These designs are very compact, directive and bandwidth efficient (greater than 5% of the center frequency). These characteristics make them suitable for mobile devices where the space is a major issue.

Keywords

5G Compact microstrip antennas Multi-band microstrip antenna Circular microstrip antenna 

References

  1. 1.
    Niu, Y., Li, Y., Jin, D., Su, L., Vasilakos, A.V.: A survey of millimeter wave communications (mmwave) for 5G: opportunities and challenges. Wirel. Netw. 21(8), 2657–2676 (2015)CrossRefGoogle Scholar
  2. 2.
    Roh, W., Seol, J.Y., Park, J., Lee, B., Lee, J., Kim, Y., Cho, J., Cheun, K., Aryanfar, F.: Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)CrossRefGoogle Scholar
  3. 3.
    Saed, M.A.: Reconfigurable broadband microstrip antenna fed by a coplanar waveguide. Prog. Electromagnet. Res. 55, 227–239 (2005)CrossRefGoogle Scholar
  4. 4.
    Cao, W., Zhang, B., Liu, A., Yu, T., Geo, D., Wei, Y.: Gain enhancement for broadband periodic endfire antenna by using split-ring resonator structures. IEEE Trans. Antennas Propag. 60(7), 3513–3516 (2012)CrossRefGoogle Scholar
  5. 5.
    Levine, E., Malamud, G., Shtrikman, S., Treves, D.: A study of microstrip array antennas with the feed network. IEEE Trans. Antennas Propag. 37(4), 426–434 (1989)CrossRefGoogle Scholar
  6. 6.
    Al-Alem, Y., Kishk, A.A.: Simple high gain 60 GHz antenna. In: International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting 2018, pp. 1693–1694. IEEE (2018)Google Scholar
  7. 7.
    Khattak, M.I., Sohail, A., Khan, U., Barki, Z., Witjaksono, G.: Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks. Prog. Electromagnet. Res. 89, 133–147 (2019)CrossRefGoogle Scholar
  8. 8.
    Şeker, C., Güneşer, M.T.: A single band antenna design for future millimeter wave wireless communication at 38 Ghz. Eur. J. Eng. Formal Sci. 2(2), 34–38 (2018)CrossRefGoogle Scholar
  9. 9.
    Imran, D., Farooqi, M., Khattak, M., Ullah, Z., Khan, M., Khattak, M., Dar, H.: Millimeter wave microstrip patch antenna for 5G mobile communication. In: International Conference on Engineering and Emerging Technologies (ICEET) 2018, pp. 1–6.‏ IEEE (2018)Google Scholar
  10. 10.
    Firdausi, A., Hakim, G., Alaydrus, M.: Designing a tri-band microstrip antenna for targetting 5G broadband communications. In: MATEC Web of Conferences 2018, vol. 218, pp. 03015.‏ EDP Sciences (2018)Google Scholar
  11. 11.
    Rahayu, Y., Hidayat, M.I.: Design of 28/38 GHz dual-band triangular-shaped slot microstrip antenna array for 5G applications. In: 2nd International Conference on Telematics and Future Generation Networks (TAFGEN) 2018, pp. 93–97.‏ IEEE (2018)Google Scholar
  12. 12.
    Sumi, M., Hirasawa, K., Shi, S.: Two rectangular loops fed in series for broadband circular polarization and impedance matching. IEEE Trans. Antennas Propag. 52(2), 551–554 (2004)CrossRefGoogle Scholar
  13. 13.
    Balanis, C.A.: Antenna Theory: Analysis and Design, 4th edn. Wiley, Hoboken (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Communication and Computer Engineering, Faculty of EngineeringTaiz UniversityTaizYemen

Personalised recommendations