Development of WDM System in Optical Amplifiers by Manipulating Fiber Length and Bandwidth for Telecommunication System

  • Roby Ikhsan
  • Romi F. Syahputra
  • Suhardi
  • SaktiotoEmail author
  • Nor Ain Husein
  • Okfalisa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1073)


The use of fiber optic for telecommunication system has widely developed because of limitations on communication ranges and methods for information demands. In the application of optical fiber communications, signal strength is reduced due to attenuation, absorption and dispersion effects of source, structure, and geometry of fiber, even for single mode fiber, these problems still exist. In order to investigate these phenomena, this paper designs and operates a simple optical design consisting of wavelength division multiplexing (WDM) which is able to multiplex various wavelength sources to one fiber optic by using various source wavelengths. This mechanism allows a bidirectional communication with several or more fibers without any interference. The output will describe the bit error rate (BER) and Q-factor and using two samples of Semiconductor Optical Amplifier (SOA) and Fiber Raman Amplifier (FRA). The simulation evaluates these amplifiers by manipulating the frequency of bandwidth until 50 GHz, a low BER corresponding to large Q-factor is reached. The BER value for SOA device is 7.59 × 10−16 and 1.54 × 10−27 for SOA device respectively for a bandwidth of 50 GHz. These data depict that SOA is able to launch the wavelength to high performance than that of FRA device. Both optical amplifiers describe better performances in term of the value of BER and Q-factor having much smaller than 10−12 and larger than that of 6 respectively for a distance of 120 km for SOA and 100 km for FRA.


Optical fiber Optical circuit WDM FRA SOA 


  1. 1.
    Agrell, E., Karlsson, M., Chraplyvy, A.R., Richardson, D.J., Krummrich, P.M., Winzer, P., et al.: Roadmap of optical communications. J. Opt. 18(6), 063002 (2016)CrossRefGoogle Scholar
  2. 2.
    Agrawal, G.P.: Fiber-Optic Communication Systems, 4th edn. Wiley, New York (2010)CrossRefGoogle Scholar
  3. 3.
    Panda, T.K., Mishra, P., Patra K.C., Barapanda, N.K.: Investigation and performance analysis of WDM System implementing FBG at different grating length and datarate for long haul optical communication. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 483–488. IEEE New York (2017)Google Scholar
  4. 4.
    Collings, B.C., Mitchell, M.L., Boivin, L., Knox, W.H.: A 1021 channel WDM system. IEEE Photonics Technol. Lett. 12(7), 906–908 (2000)CrossRefGoogle Scholar
  5. 5.
    Keiser, E.G.: A review of WDM technology and applications. Optical Fiber Technology 5(1), 3–39 (1999)CrossRefGoogle Scholar
  6. 6.
    McCoy, A.D., Thomsen, B.C., Ibsen, M., Richardson, D.J.: Filtering effects in a spectrum-sliced WDM system using SOA-based noise reduction. IEEE Photonics Technol. Lett. 16(2), 680–682 (2004)CrossRefGoogle Scholar
  7. 7.
    Othman, M.A., Ismail, M.M., Sulaiman, H.A., Misran, M.H., Said, M.A.M., Rahim, Y.A., ChePee, A.N., Motsidi, M.R.: An analysis of 10 Gbits/s optical transmission system using fiber Bragg grating (FBG). IOSR J. Eng. (IOSRJEN) 2(7), 55–61 (2012)CrossRefGoogle Scholar
  8. 8.
    Prashad, B., Mallick, B., Parida, A.K.: Fiber Bragg grating as a dispersion compensator in an optical transmission system using optisystem software. Int. Res. J. Eng. Technol. (IRJET) 2(6), 9–14 (2014)Google Scholar
  9. 9.
    Kumar, K., Jaiswal, A.K., Kumar, M., Agrawal, N.: Performance analysis of dispersion compensation using fiber Bragg grating (FBG) in optical communication. Int. J. Curr. Eng. Technol. 4(3), 1527–1531 (2014)Google Scholar
  10. 10.
    Litchinitser, N.M., Patterson, D.B.: Analysis of fiber Bragg gratings for dispersion compensation in reflective and transmissive geometries. J. Lightwave Technol. 15(8), 1323–1328 (1997)CrossRefGoogle Scholar
  11. 11.
    Sharma, A., Singh, S., Sharma, B.: Investigations on dispersion compensation using fiber Braggs grating. Int. J. Comput. Appl. 73(2), 34–43 (2013)Google Scholar
  12. 12.
    Mohammadi, S.O., Mozzaffari, S., Shahidi, M.M.: Simulation of a transmission system to compensate dispersion in an optical fiber by chirp gratings. Int. J. Phys. Sci. 6(32), 7354–7360 (2011)Google Scholar
  13. 13.
    Warm, S., Bunge, C.-A., Wuth, T., Petermann, K.: Electronic dispersion precompensation with a 10 Gb/s directly modulated laser. IEEE Photonics Technol. Lett. 21(15), 1090–1092 (2009)CrossRefGoogle Scholar
  14. 14.
    Foo, B., Corcoran, B.: Lowery, a: optoelectronic method for inline compensation of XPM in long-haul optical links. Opt. Express 23(2), 859–872 (2015)CrossRefGoogle Scholar
  15. 15.
    Nielsen, L.G., Wandel, M., Kristensen, P., Jorgensen, C., Jorgensen, L.V., Edvold, B., Palsdottir, B., Jakobsen, D.: Dispersion-compensating fibers. J. Lightwave Technol. 23(11), 3566–3579 (2005)CrossRefGoogle Scholar
  16. 16.
    Lowery, A.J., Armstrong, J.: Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems. Opt. Express 14(6), 2079–2084 (2006)CrossRefGoogle Scholar
  17. 17.
    Golani, O., Elson, D., Lavery, D., Galdino, L., Killey, R., Bayvel, P., Shtaif, M.: Experimental characterization of nonlinear interference noise as a process of intersymbol interference. Opt. Lett. 43(5), 1123–1126 (2018)CrossRefGoogle Scholar
  18. 18.
    Hossain, M.S., Howlader, S., Basak, R.: Investigating the Q-factor and BER of a WDM system in optical fiber communication network by using SOA. Int. J. Innov. Sci. Res. 13(1), 315–322 (2015)Google Scholar
  19. 19.
    Vedala, G., Hameed, M.A., RongqingHui, R.: Digital compensation of SSBI in direct detection multicarrier system with SOA nonlinearities. IEEE Photonics Technol. Lett. 29(4), 369–372 (2017)CrossRefGoogle Scholar
  20. 20.
    Kikuchi, K.: Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34(1), 157–179 (2016)CrossRefGoogle Scholar
  21. 21.
    Aldouri, M.Y., Aljunid, S.A., Ahmad, R.B., Fadhil, H.A.: Bit error rate (BER) performance of return-to-zero and non-return-to-zero data signals optical code division multiple access (OCDMA) system based on and detection scheme in fiber-to-the-home (FTTH) networks. Opt. Appl. 41(1), 173–181 (2011)Google Scholar
  22. 22.
    Kim, J.-H., Lim, J.-H., Kim, B., Sim, J.-Y., Park, H.-J.: An adaptive equalizer for high-speed receiver using a CDR-assisted all-digital jitter measurement. J. Semicond. Technol. Sci. 15(2), 155–167 (2015)CrossRefGoogle Scholar
  23. 23.
    Marhic, M.E., Andrekson, P.A., Petropoulos, P., Radic, S., Peucheret, C., Jazayerifar, M.: Fiber optical parametric amplifiers in optical communication systems. Laser Photonics Rev. 9(1), 50–74 (2015)CrossRefGoogle Scholar
  24. 24.
    Clivati, C., Bolognini, G., Calonico, D., Faralli, S., Mura, A., Levi, F.: In-field Raman amplification on coherent optical fiber links for frequency metrology. Opt. Express 23(8), 10604–10615 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Roby Ikhsan
    • 1
  • Romi F. Syahputra
    • 1
  • Suhardi
    • 1
  • Saktioto
    • 1
    Email author
  • Nor Ain Husein
    • 2
  • Okfalisa
    • 3
  1. 1.Department of PhysicsUniversitas RiauPekanbaruIndonesia
  2. 2.Jabatan Fizik, Fakulti SainsUniversiti Teknologi MalaysiaSkudaiMalaysia
  3. 3.UIN Sultan Syarif KasimPekanbaruIndonesia

Personalised recommendations