Advertisement

Gravity-Capillary and Flexural-Gravity Solitary Waves

  • Emilian I. PărăuEmail author
  • Jean-Marc Vanden-Broeck
Chapter
Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)

Abstract

Solitary gravity-capillary and flexural-gravity waves in two and three dimensions of space are reviewed in this paper. Numerical methods used to compute the solitary waves are described in detail and typical solutions found over the years are presented. Similarities and differences between the solutions for the two physical problems are discussed.

Keywords

Solitary waves Flexural-gravity Gravity-capillary 

Mathematics Subject Classification (2000)

Primary 76B25; Secondary 76B45 

Notes

Acknowledgements

The authors are grateful to the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, for the support and hospitality during the 2017 Nonlinear Water Waves—an Interdisciplinary Interface workshop. This work was partially supported by EPSRC grants EP/J019305/1 for Emilian I. Părău and EP/J019569/1 for Jean-Marc Vanden-Broeck.

References

  1. 1.
    M.J. Ablowitz, H. Segur, On the evolution of packets of water waves. J. Fluid Mech. 92(4), 691–715 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    B. Akers, P.A. Milewski, A model equation for wavepacket solitary waves arising from capillary-gravity flows. Stud. Appl. Math. 122(3), 249–274 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    T.R. Akylas, Envelope solitons with stationary crests. Phys. Fluids A 5(4), 789–791 (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    T.R. Akylas, Three-dimensional long water-wave phenomena. Ann. Rev. Fluid Mech. 26(1), 191–210 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    T.R. Akylas, Y. Cho, On the stability of lumps and wave collapse in water waves. Philos. Trans. R. Soc. A 366(1876), 2761–2774 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    M.R. Alam, Dromions of flexural-gravity waves. J. Fluid Mech. 719, 1–13 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    D.J. Benney, G.J. Roskes, Wave instabilities. Stud. Appl. Math. 48, 377–385 (1969)CrossRefzbMATHGoogle Scholar
  8. 8.
    K.M. Berger, P.A. Milewski, The generation and evolution of lump solitary waves in surface-tension-dominated flows. SIAM J. Appl. Math. 61(3), 731–750 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    B. Buffoni, M.D. Groves, S.-M. Sun, E. Wahlén, Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves. J. Differ. Equ. 254, 1006–1096 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    B. Buffoni, M.D. Groves, E. Wahlén, A variational reduction and the existence of a fully localised solitary wave for the three-dimensional water-wave problem with weak surface tension. Arch. Rat. Mech. Anal. 228, 773–820 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    A.R. Champneys, J.-M. Vanden-Broeck, G.J. Lord, Do true elevation gravity-capillary solitary waves exist? A numerical investigation. J. Fluid Mech. 454, 403–417 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    D. Clamond, D. Dutykh, A. Durán, A plethora of generalised solitary gravity-capillary water waves. J. Fluid Mech. 784, 664–680 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    W. Craig, C. Sulem, Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    A. Davey, K. Stewartson, On three-dimensional packets of surface waves. Proc. R. Soc. A 338, 101–110 (1974)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    F. Dias, G. Iooss, Capillary-gravity solitary waves with damped oscillations. Phys. D 65(4), 399–423 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    F. Dias, G. Iooss, Water-waves as a spatial dynamical system, in Handbook of Mathematical Fluid Dynamics, vol. 2 (North-Holland, Amsterdam, 2003), pp. 443–499zbMATHGoogle Scholar
  17. 17.
    F. Dias, C. Kharif, Nonlinear gravity and capillary-gravity waves. Annu. Rev. Fluid Mech. 31, 301–346 (1999)CrossRefMathSciNetGoogle Scholar
  18. 18.
    F. Dias, P. Milewski, On the fully-nonlinear shallow-water generalized Serre equations. Phys. Lett. A 374(8), 1049–1053 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    F. Dias, D. Menasce, J.-M. Vanden-Broeck, Numerical study of capillary-gravity solitary waves. Eur. J. Mech. B/Fluids 15, 17–36 (1996)MathSciNetzbMATHGoogle Scholar
  20. 20.
    V.D. Djordjevic, L.G. Redekopp, On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79, 703–714 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    A.I. Dyachenko, E.A. Kuznetsov, M.D. Spector, V.E. Zakharov, Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221, 73–79 (1996)CrossRefGoogle Scholar
  22. 22.
    L.K. Forbes, Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution. J. Fluid Mech. 169, 409–428 (1986)Google Scholar
  23. 23.
    L.K. Forbes, Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solution. J. Fluid Mech. 188, 491–508 (1988)Google Scholar
  24. 24.
    L.K. Forbes, An algorithm for 3-dimensional free surface problems in hydrodynamics. J. Comput. Phys. 82, 330–347 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    T. Gao, J.-M. Vanden-Broeck, Numerical studies of two-dimensional hydroelastic periodic and generalised solitary waves. Phys. Fluids 26, 087101 (2014)CrossRefzbMATHGoogle Scholar
  26. 26.
    T. Gao, Z. Wang, J.-M. Vanden-Broeck. New hydroelastic solitary waves in deep water and their dynamics. J. Fluid Mech. 788, 469–491 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    T. Gao, Z. Wang, J.-M. Vanden-Broeck, On asymmetric generalized solitary gravity-capillary waves in finite depth. Proc. R. Soc. A 472, 20160454 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    T. Gao, J.-M. Vanden-Broeck, Z. Wang, Numerical computations of two-dimensional flexural-gravity solitary waves on water of arbitrary depth. IMA J. Appl. Math. 83, 436–450 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    A.G. Greenhill, Wave motion in hydrodynamics. Am. J. Math. 9, 62–96 (1886)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    R. Grimshaw, B. Malomed, E. Benilov, Solitary waves with damped oscillatory tails: an analysis of the fifth-order Korteweg-de Vries equation. Phys. D 77, 473–485Google Scholar
  31. 31.
    M.D. Groves, S.-M. Sun, Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem. Arch. Rat. Mech. Anal. 188, 1–91 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    M.D. Groves, B. Hewer, E. Wahlén, Variational existence theory for hydroelastic solitary waves. C. R. Math. Acad. Sci. Paris 354, 1078–1086 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    P. Guyenne, E.I. Părău, Computations of fully nonlinear hydroelastic solitary waves on deep water. J. Fluid Mech. 713, 307–329 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    P. Guyenne, E.I. Părău, Finite-depth effects on solitary waves in a floating ice sheet. J. Fluids Struct. 49, 242–262 (2014)CrossRefGoogle Scholar
  35. 35.
    P. Guyenne, E.I. Părău, Forced and unforced flexural-gravity solitary waves. Proc. IUTAM 11, 44–57 (2014)CrossRefGoogle Scholar
  36. 36.
    P. Guyenne, E.I. Părău, Asymptotic modeling and numerical simulation of solitary waves in a floating ice sheet, in Proceedings of 25th International Ocean Polar Engineering Conference (ISOPE 2015), Kona, Hawaii, 21–26 June 2015, pp. 467–475Google Scholar
  37. 37.
    M. Hărăguş-Courcelle, A. Il’ichev, Three-dimensional solitary waves in the presence of additional surface effects. Eur. J. Mech. B/Fluids 17(5), 739–768 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    J.K. Hunter, J.-M. Vanden-Broeck, Solitary and periodic gravity-capillary waves of finite amplitude. J. Fluid Mech. 134, 205–219 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    A.T. Il’ichev, V.J. Tomashpolskii, Characteristic parameters of nonlinear surface envelope waves beneath an ice cover under pre-stress. Wave Motion 86, 11–20 (2019)CrossRefMathSciNetGoogle Scholar
  40. 40.
    G. Iooss, K. Kirchgässner, Bifurcation d’ondes solitaires en présence d’une faible tension superficielle. C. R. Acad. Sci. Paris Ser. 1 311, 265–268 (1990)zbMATHGoogle Scholar
  41. 41.
    G. Iooss, K. Kirchgässner, Water waves for small surface tension: an approach via normal form. Proc. R. Soc. Edin. A 122, 267–299 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    G. Iooss, P. Kirrmann, Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves. Arch. Rat. Mech. Anal. 136, 1–19 (1996)CrossRefzbMATHGoogle Scholar
  43. 43.
    B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15(6), 539–541 (1970)zbMATHGoogle Scholar
  44. 44.
    B. Kim, T.R. Akylas, On gravity-capillary lumps. J. Fluid Mech. 540, 337–351 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    K. Kirchgässner, Nonlinear resonant surface waves and homoclinic bifurcation. Adv. Appl. Math. 26, 135–181 (1988)zbMATHGoogle Scholar
  46. 46.
    A. Korobkin, E.I. Părău, J.-M. Vanden-Broeck, The mathematical challenges and modelling of the hydroelasticity. Philos. Trans. Royal Soc. A. 369, 2803–2812 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 36, 422–433 (1895)CrossRefMathSciNetzbMATHGoogle Scholar
  48. 48.
    M. Longuet-Higgins, Capillary-gravity waves of solitary type on deep water. J. Fluid Mech. 200, 451–470 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    M.S. Longuet-Higgins, Capillary-gravity waves of solitary type and envelope solitons on deep water. J. Fluid Mech. 252, 703–711 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    P.A. Milewski, Three-dimensional localized solitary gravity-capillary waves. Commun. Math. Sci. 3(1), 89–99 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  51. 51.
    P.A. Milewski, J.-M. Vanden-Broeck, Z. Wang, Dynamics of steep two-dimensional gravity-capillary solitary waves. J. Fluid Mech. 664, 466–477 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    P.A. Milewski, J.-M. Vanden-Broeck, Z. Wang, Hydroelastic solitary waves in deep water. J. Fluid Mech. 679, 628–640 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  53. 53.
    P.A. Milewski, J.-M. Vanden-Broeck, Z. Wang, Steady dark solitary flexural gravity waves. Proc. R. Soc. A 469, 20120485 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  54. 54.
    P.A. Milewski, Z. Wang, Three dimensional flexural-gravity waves. Stud. Appl. Math. 131(2), 135–148 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  55. 55.
    E. Părău, F. Dias, Nonlinear effects in the response of a floating ice plate to a moving load. J. Fluid Mech. 460, 281–305 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  56. 56.
    E.I. Părău, J.-M. Vanden-Broeck, Nonlinear two- and three- dimensional free surface flows due to moving disturbances. Eur. J. Mech. B/Fluids 21, 643–656 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  57. 57.
    E.I. Părău, J.-M. Vanden-Broeck, Three-dimensional waves beneath an ice sheet due to a steadily moving pressure. Philos. Trans. R. Soc. A 369, 2973–2988 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  58. 58.
    E.I. Părău, J.-M. Vanden-Broeck, Three-dimensional nonlinear waves under an ice sheet and related flows, in Proceedings of 21st International Offshore Polar Engineering Conference (ISOPE-2011), Maui, 19–24 June 2011 (International Society of Offshore and Polar Engineers (ISOPE), Mountain View, 2011)Google Scholar
  59. 59.
    E.I. Părău, J.-M. Vanden-Broeck, M.J. Cooker, Nonlinear three-dimensional gravity-capillary solitary waves. J. Fluid Mech. 536, 99–105 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  60. 60.
    E.I. Părău, J.-M. Vanden-Broeck, M.J. Cooker, Three-dimensional gravity-capillary solitary waves in water of finite depth and related problems. Phys. Fluids. 7, 122101 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  61. 61.
    P.I. Plotnikov, J.F. Toland, Modelling nonlinear hydroelastic waves. Philos. Trans. R. Soc. A 369, 2942–2956 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  62. 62.
    F. Smith, A. Korobkin, E. Parau, D. Feltham, V. Squire, Modelling of sea-ice phenomena. Philos. Trans. R. Soc. A 376, 20180157 (2018)CrossRefGoogle Scholar
  63. 63.
    O. Trichtchenko, E.I. Parau, J.-M. Vanden-Broeck, P. Milewski, Solitary flexural-gravity waves in three dimensions. Philos. Trans. R. Soc. A 376(2129), 20170345 (2018)Google Scholar
  64. 64.
    J.-M. Vanden-Broeck, Elevation solitary waves with surface tension. Phys. Fluids A 3, 2659–2663 (1991)CrossRefzbMATHGoogle Scholar
  65. 65.
    J.-M. Vanden-Broeck, Gravity-Capillary Free-Surface Flows (Cambridge University Press, Cambridge, 2010)CrossRefzbMATHGoogle Scholar
  66. 66.
    J.-M. Vanden-Broeck, F. Dias, Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549–555 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  67. 67.
    J.-M. Vanden-Broeck, E.I. Părău, Two-dimensional generalised solitary waves and periodic waves under an ice sheet. Philos. Trans. R. Soc. A. 369, 2957–2972 (2011)CrossRefzbMATHGoogle Scholar
  68. 68.
    Z. Wang, P.A. Milewski, Dynamics of gravity-capillary solitary waves in deep water. J. Fluid Mech. 708, 480–501 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  69. 69.
    Z. Wang, J.-M. Vanden-Broeck, Multilump symmetric and nonsymmetric gravity-capillary solitary waves in deep water. SIAM J. Appl. Math. 75, 978–998 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  70. 70.
    Z. Wang, J.-M. Vanden-Broeck, P.A. Milewski, Two-dimensional flexural-gravity waves of finite amplitude in deep water. IMA J. Appl. Math. 78, 750–761 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  71. 71.
    Z. Wang, P.A. Milewski, J.-M. Vanden-Broeck, Computation of three-dimensional flexural-gravity solitary waves in arbitrary depth. Proc. IUTAM 11, 119–129 (2014)CrossRefGoogle Scholar
  72. 72.
    Z. Wang, J.-M. Vanden-Broeck, P.A. Milewski, Asymmetric gravity-capillary solitary waves on deep water. J. Fluid Mech. 759, R2 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  73. 73.
    X. Xia, H.T. Shen, Nonlinear interaction of ice cover with shallow water waves in channels. J. Fluid Mech. 467, 259–268 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  74. 74.
    T.S. Yang, T.R. Akylas, On asymmetric gravity-capillary solitary waves. J. Fluid Mech. 330, 215–232 (1997)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MathematicsUniversity of East AngliaNorwichUK
  2. 2.Department of MathematicsUniversity College LondonLondonUK

Personalised recommendations