Advertisement

Chloroplast Actin Filaments Involved in Chloroplast Photorelocation Movements

  • Masamitsu Wada
  • Sam-Geun Kong
Chapter
Part of the Plant Cell Monographs book series (CELLMONO, volume 24)

Abstract

Plants have evolved sophisticated mechanisms to survive in various environmental changes. Chloroplast movement is an essential response to optimize photosynthesis and to avoid photodamage under fluctuating light conditions. Chloroplasts accumulate at periclinal walls to maximize light absorption under weak light while they move to anticlinal walls to minimize light exposure under strong light. The light strength is monitored by blue light receptor phototropins in general. In Arabidopsis thaliana, both phototropin1 (phot1) and phototropin2 (phot2) are involved in accumulation response, but phot2 is specifically involved in avoidance response. Such appropriate photorelocation movements of chloroplasts are mediated by a structure made of short actin filaments specialized for chloroplast movement. The short actin filaments are dynamically reorganized on the leading edges of moving chloroplasts, so that named chloroplast actin (cp-actin) filaments. In this chapter, we summarize recent knowledge about cp-actin filaments and next challenges to elucidate the underlying mechanisms.

Notes

Acknowledgment

The work was supported by the grants from the Japan Society for the Promotion of Science (JSPS) (No. 20227001, 23120523, 25120721, 25251033, and 16K14758) and from Ohsumi Frontier Science Foundation to M.W. and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1D1A3B03935947) and the Next-Generation BioGreen 21 Program grant funded by the Korea government Rural Development Administration (RDA) (No. PJ01366901) to S.-G. K.

References

  1. Anielska-Mazur A, Bernaś T, Gabryś H (2009) In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses. BMC Plant Biol 9:64PubMedPubMedCentralCrossRefGoogle Scholar
  2. Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H (2012) Blue light signalling in chloroplast movements. J Exp Bot 63:1559–1574PubMedCrossRefGoogle Scholar
  3. Blanchoin L, Staiger CJ (2010) Plant formins: diverse isoforms and unique molecular mechanism. Biochim Biophys Acta 1803:201–206PubMedCrossRefGoogle Scholar
  4. Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M (2008) Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol Biol Evol 25:2717–2733PubMedPubMedCentralCrossRefGoogle Scholar
  5. DeBlasio SL, Mullen JL, Luesse DR, Hangarter RP (2003) Phytochrome modulation of blue light-induced chloroplast movements in Arabidopsis. Plant Physiol 133:1471–1479PubMedPubMedCentralCrossRefGoogle Scholar
  6. Deeks MJ, Cvrckova F, Machesky LM, Mikitova V, Ketelaar T, Zarsky V, Davies B, Hussey PJ (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168:529–540PubMedCrossRefGoogle Scholar
  7. Diao M, Ren S, Wang Q, Qian L, Shen J, Liu Y, Huang S (2018) Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. elife 7:e36316PubMedPubMedCentralCrossRefGoogle Scholar
  8. Duan Z, Tominaga M (2018) Actin-myosin XI: an intracellular control network in plants. Biochem Biophys Res Commun 506:403–408PubMedPubMedCentralCrossRefGoogle Scholar
  9. Firat-Karalar EN, Welch MD (2011) New mechanisms and functions of actin nucleation. Curr Opin Cell Biol 23:4–13PubMedCrossRefGoogle Scholar
  10. Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726PubMedCrossRefGoogle Scholar
  11. Haupt W (1956) Chloroplastenbewegung. Z Bot 44:455–462Google Scholar
  12. Higa T, Hasegawa S, Hayasaki Y, Kodama Y, Wada M (2017) Temperature-dependent signal transmission in chloroplast accumulation response. J Plant Res 130:779–789PubMedCrossRefGoogle Scholar
  13. Ichikawa S, Yamada N, Suetsugu N, Wada M, Kadota A (2011) Red light, phot1 and JAC1 modulate phot2-dependent reorganization of chloroplast actin filaments and chloroplast avoidance movement. Plant Cell Physiol 52:1422–1432PubMedCrossRefGoogle Scholar
  14. Ingouff M, Fitz Gerald JN, Guerin C, Robert H, Sorensen MB, Van Damme D, Geelen D, Blanchoin L, Berger F (2005) Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol 7:374–380CrossRefPubMedGoogle Scholar
  15. Jaedicke K, Lichtenthaler AL, Meyberg R, Zeidler M, Hughes J (2012) A phytochrome-phototropin light signaling complex at the plasma membrane. Proc Natl Acad Sci U S A 109:12231–12236PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kadota A, Wada M (1992a) Photoinduction of formation of circular structures by microfilaments on chloroplasts during intracellular orientation in protonemal cells of the fern Adiantum capillus-veneris. Protoplasma 167:97–107CrossRefGoogle Scholar
  17. Kadota A, Wada M (1992b) Photoorientation of chloroplasts in protonemal cells of the fern Adiantum as analyzed by use of a video-tracking system. Bot Mag Tokyo 105:265–279CrossRefGoogle Scholar
  18. Kadota A, Sato Y, Wada M (2000) Intracellular chloroplast photorelocation in the moss Physcomitrella patens is mediated by phytochrome as well as by a blue-light receptor. Planta 210:932–937PubMedCrossRefGoogle Scholar
  19. Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M (2009) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci U S A 106:13106–13111PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kagawa T, Wada M (1996) Phytochrome- and blue-light-absorbing pigment-mediated directional movement of chloroplasts in dark-adapted prothallial cells of fern Adiantum as analyzed by microbeam irradiation. Planta 198:488–493CrossRefGoogle Scholar
  21. Kagawa T, Wada M (2004) Velocity of chloroplast avoidance movement is fluence rate dependent. Photochem Photobiol Sci 3:592–595PubMedCrossRefGoogle Scholar
  22. Kandasamy MK, Meagher RB (1999) Actin-organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil Cytoskeleton 44:110–118PubMedCrossRefGoogle Scholar
  23. Kasahara M, Kagawa T, Sato Y, Kiyosue T, Wada M (2004) Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol 135:1388–1397PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kawai H, Kanegae T, Christensen S, Kiyosue T, Sato Y, Imaizumi T, Kadota A, Wada M (2003) Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature 421:287–290PubMedCrossRefGoogle Scholar
  25. Kong S-G, Arai Y, Suetsugu N, Yanagida T, Wada M (2013) Rapid severing and motility of chloroplast-actin filaments are required for the chloroplast avoidance response in Arabidopsis. Plant Cell 25:572–590PubMedPubMedCentralCrossRefGoogle Scholar
  26. Krzeszowiec W, Gabryś H (2007) Phototropin mediated relocation of myosins in Arabidopsis thaliana. Plant Signal Behav 2:333–336PubMedPubMedCentralCrossRefGoogle Scholar
  27. Krzeszowiec W, Rajwa B, Dobrucki J, Gabryś H (2007) Actin cytoskeleton in Arabidopsis thaliana under blue and red light. Biol Cell 99:251–260PubMedCrossRefGoogle Scholar
  28. Kumatani T, Sakurai-Ozato N, Miyawaki N, Yokota E, Shimmen T, Terashima I, Takagi S (2006) Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro. Protoplasma 229:45–52PubMedCrossRefGoogle Scholar
  29. Lan Y, Liu X, Fu Y, Huang S (2018) Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genet 14:e1007789PubMedPubMedCentralCrossRefGoogle Scholar
  30. Li FW, Mathews S (2016) Evolutionary aspects of plant photoreceptors. J Plant Res 129:115–122PubMedCrossRefGoogle Scholar
  31. Li Y, Shen Y, Cai C, Zhong C, Zhu L, Yuan M, Ren H (2010) The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell 22:2710–2726PubMedPubMedCentralCrossRefGoogle Scholar
  32. Li FW, Villarreal JC, Kelly S, Rothfels CJ, Melkonian M, Frangedakis E, Ruhsam M, Sigel EM, Der JP, Pittermann J, Burge DO, Pokorny L, Larsson A, Chen T, Weststrand S, Thomas P, Carpenter E, Zhang Y, Tian Z, Chen L, Yan Z, Zhu Y, Sun X, Wang J, Stevenson DW, Crandall-Stotler BJ, Shaw AJ, Deyholos MK, Soltis DE, Graham SW, Windham MD, Langdale JA, Wong GK, Mathews S, Pryer KM (2014) Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci U S A 111:6672–6677PubMedPubMedCentralCrossRefGoogle Scholar
  33. Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh KC, Lagarias JC, Wada M (1998) A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci U S A 95:15826–15830PubMedPubMedCentralCrossRefGoogle Scholar
  34. Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815PubMedPubMedCentralCrossRefGoogle Scholar
  35. Oikawa K, Yamasato A, Kong S-G, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148:829–842PubMedPubMedCentralCrossRefGoogle Scholar
  36. Paves H, Truve E (2007) Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells. Protoplasma 230:165–169PubMedCrossRefGoogle Scholar
  37. Sakai Y, Takagi S (2005) Reorganized actin filaments anchor chloroplasts along the anticlinal walls of Vallisneria epidermal cells under high-intensity blue light. Planta 221:823–830PubMedCrossRefGoogle Scholar
  38. Sato Y, Wada M, Kadota A (2001) Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci 114:269–279PubMedGoogle Scholar
  39. Sattarzadeh A, Krahmer J, Germain AD, Hanson MR (2009) A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana. Mol Plant 2(6):1351–1358PubMedCrossRefGoogle Scholar
  40. Senn G (1908) Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren. Wilhelm Engelmann, LeipzigGoogle Scholar
  41. Sparkes I (2011) Recent advances in understanding plant myosin function: life in the fast lane. Mol Plant 4:805–812PubMedCrossRefGoogle Scholar
  42. Suetsugu N, Wada M (2016) Evolution of the cp-actin-based motility system of chloroplasts in green plants. Front Plant Sci 7:561PubMedPubMedCentralCrossRefGoogle Scholar
  43. Suetsugu N, Mittmann F, Wagner G, Hughes J, Wada M (2005) A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci U S A 102:13705–13709PubMedPubMedCentralCrossRefGoogle Scholar
  44. Suetsugu N, Dolja VV, Wada M (2010a) Why have chloroplasts developed a unique motility system? Plant Signal Behav 5:1190–1196PubMedPubMedCentralCrossRefGoogle Scholar
  45. Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQP, Kadota A, Wada M (2010b) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:8860–8865PubMedPubMedCentralCrossRefGoogle Scholar
  46. Suetsugu N, Sato Y, Tsuboi H, Kasahara M, Imaizumi T, Kagawa T, Hiwatashi Y, Hasebe M, Wada M (2012) The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants. Plant Cell Physiol 53:1854–1865PubMedCrossRefGoogle Scholar
  47. Suetsugu N, Higa T, Gotoh E, Wada M (2016) Light-induced movements of chloroplasts and nuclei are regulated in both cp-actin-filament-dependent and -independent manners in Arabidopsis thaliana. PLoS One 11:e0157429PubMedPubMedCentralCrossRefGoogle Scholar
  48. Takagi S (2000) Roles for actin filaments in chloroplast motility and anchoring. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic, Dordrecht, The Netherlands, pp 203–212CrossRefGoogle Scholar
  49. Takagi S (2003) Actin-based photo-orientation movement of chloroplasts in plant cells. J Exp Biol 206:1963–1969PubMedCrossRefGoogle Scholar
  50. Takagi S, Takamatsu H, Sakurai-Ozato N (2009) Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution. J Exp Bot 60:3301–3310PubMedCrossRefGoogle Scholar
  51. Takamatsu H, Takagi S (2011) Actin-dependent chloroplast anchoring is regulated by Ca2+-calmodulin in spinach mesophyll cells. Plant Cell Physiol 52:1973–1982PubMedCrossRefGoogle Scholar
  52. Tsuboi H, Wada M (2011) Chloroplasts can move in any direction to avoid strong light. J Plant Res 124:201–210PubMedCrossRefGoogle Scholar
  53. Usami H, Maeda T, Fujii Y, Oikawa K, Takahashi F, Kagawa T, Wada M, Kasahara M (2012) CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens. Planta 236:1889–1897PubMedCrossRefGoogle Scholar
  54. van Gisbergen PA, Bezanilla M (2013) Plant formins: membrane anchors for actin polymerization. Trends Cell Biol 23:227–233PubMedCrossRefGoogle Scholar
  55. Wada M (2013) Chloroplast movement. Plant Sci 210:177–182PubMedCrossRefGoogle Scholar
  56. Wada M (2016) Chloroplast and nuclear photorelocation movements. Proc Jpn Acad Ser B Phys Biol Sci 92:387–411PubMedPubMedCentralCrossRefGoogle Scholar
  57. Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468PubMedCrossRefGoogle Scholar
  58. Wada M, Kong S-G (2018) Actin-mediated movement of chloroplasts. J Cell Sci 131:jcs210310PubMedCrossRefGoogle Scholar
  59. Wang J, Xue X, Ren H (2012) New insights into the role of plant formins: regulating the organization of the actin and microtubule cytoskeleton. Protoplasma 249(Suppl 2):S101–S107PubMedCrossRefGoogle Scholar
  60. Whippo CW, Khurana P, Davis PA, DeBlasio SL, DeSloover D, Staiger CJ, Hangarter RP (2011) THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility. Curr Biol 21:59–64PubMedCrossRefGoogle Scholar
  61. Yamada N, Suetsugu N, Wada M, Kadota A (2011) Phototropin-dependent biased relocalization of cp-actin filaments can be induced even when chloroplast movement is inhibited. Plant Signal Behav 6:1651–1653PubMedPubMedCentralCrossRefGoogle Scholar
  62. Yamashita H, Sato Y, Kanegae T, Kagawa T, Wada M, Kadota A (2011) Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens. Planta 233:357–368PubMedCrossRefGoogle Scholar
  63. Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z (2009) Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21:3868–3884PubMedPubMedCentralCrossRefGoogle Scholar
  64. Zurzycki J (1955) Chloroplast arrangement as a factor in photosynthesis. Acta Soc Bot Pol 24:27–63CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Masamitsu Wada
    • 1
  • Sam-Geun Kong
    • 2
  1. 1.Department of Biological Sciences, Graduate School of ScienceTokyo Metropolitan UniversityTokyoJapan
  2. 2.Department of Biological Sciences, College of Natural SciencesKongju National UniversityChungnamSouth Korea

Personalised recommendations