Advertisement

Classification of EEG Motion Artifact Signals Using Spatial ICA

  • Hsin-Hsiung HuangEmail author
  • Aubrey Condor
  • Helen J. Huang
Chapter
  • 47 Downloads
Part of the Emerging Topics in Statistics and Biostatistics book series (ETSB)

Abstract

Using electroencephalography (EEG) data to extract information about cortical signals has become an increasingly explored task of interest in the field of computational neuroscience. In this paper, we proposed a novel procedure which reduce dimension by applying spatial Independent Component Analysis (SICA) on EEG motion artifact data and classify gait speed for a given subject by the projected EEG motion artifact signals. Whereas most applications of ICA in analyzing EEG data employ temporal ICA, we use SICA and Principal Component Analysis for dimension reduction before applying classifiers such as Support Vector Machines, Naive Bayes, and multinomial logistic regression to the extracted independent components. We evaluate and compare the classification models by using randomly selected channels from the multi-channel EEG motion artifact data as our test data. For practical application and interpretation, we treat the test channels as if they might come from a new trial for the given subject.

Keywords

Classification Brain signals Time series High-dimensional Spatial dimension reduction 

Notes

Acknowledgement

We thank NIH for grant 1R01AG054621-01 which partially supported this study.

References

  1. 1.
    Anemüller, J., Duann, J. R., Sejnowski, T. J., & Makeig, S. (2006). Spatio-temporal dynamics in fMRI recordings revealed with complex independent component analysis. Neurocomputing, 69, 1502–1512CrossRefGoogle Scholar
  2. 2.
    Barua, S., & Begum, S. (2014). A review on machine learning algorithms in handling EEG artifacts. In Proceeding of the Swedish AI Society (SAIS) Workshop (SAIS 14) (pp. 22–23).Google Scholar
  3. 3.
    Bell, A., & Sejnowski, T. (1995). An information maximization approach to blind separation and blind deconvolution. Advances in Neural Information Processing Systems, 7, 1129–1159.Google Scholar
  4. 4.
    Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Berlin: Springer.zbMATHGoogle Scholar
  5. 5.
    Brown, G. D., Yamada, S., & Sejnowski, T. J. (2001). Independent component analysis at the neural cocktail party. Trends in Neuroscience, 24(1), 54–63.CrossRefGoogle Scholar
  6. 6.
    Calhoun, V. D., Adali, T., Hansen, L. K., Larsen, J. J. & Pekar, J. J. (2003). ICA of functional MRI data: an overview. In In Proceedings of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation (pp. 281–288).Google Scholar
  7. 7.
    Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Human Brain Mapping, 13, 43–53.CrossRefGoogle Scholar
  8. 8.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.zbMATHGoogle Scholar
  9. 9.
    Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012). Independent EEG sources are dipolar. PLoS One, 7(2), e30135.CrossRefGoogle Scholar
  10. 10.
    Enders, H., & Nigg, B. M. (2015). Measuring human locomotor control using EMG and EEG: Current knowledge, limitations and future considerations. European Journal of Sport Science, 16(4), 1–11.Google Scholar
  11. 11.
    Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.CrossRefGoogle Scholar
  12. 12.
    Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning, 45(2), 171–186.CrossRefGoogle Scholar
  13. 13.
    Hyvärinen, A., & Oja, E. (1997) A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483–1492.CrossRefGoogle Scholar
  14. 14.
    Hyvärinen, A., & Oja, E. (2000) Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.CrossRefGoogle Scholar
  15. 15.
    James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer.CrossRefGoogle Scholar
  16. 16.
    Keerthi, S., & Lin, C. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15(7), 1667–1689.CrossRefGoogle Scholar
  17. 17.
    Kline, J., Huang, H., Snyder, K., & Ferris, D. (2015). Isolating gait-related movement artifacts in electroencephalography during human walking. Journal of Neural Engineering, 12(4), 046022.CrossRefGoogle Scholar
  18. 18.
    Langlois, D., Chartier, S., & Gosselin, D. (2010). An introduction to independent component analysis: InfoMax and FastICA algorithms. Tutorials in Quantitative Methods for Psychology, 6(1), 31–38.CrossRefGoogle Scholar
  19. 19.
    Majka, M. (2017) naivebayes: High performance implementation of the Naive Bayes algorithm. R package, 2017, version 0.9.1.Google Scholar
  20. 20.
    Marchini, J. L., Heaton, C., & Ripley, B. D. (2017) Package fastICA. R package, version 1.2-1.Google Scholar
  21. 21.
    Meyer, D., Dimiriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C., et al. (2017) e1071: Misc functions of the Department of Statistics, Probability Theory Group. R package, version 1.6-8.Google Scholar
  22. 22.
    Nordin, A., Hairston, W., & Ferris, D. (2018). Dualelectrode motion artifact cancellation for mobile electroencephalography. Journal of Neural Engineering, 15, 056024.CrossRefGoogle Scholar
  23. 23.
    Oja, E., & Yuan, Z. (2006). The FastICA algorithm revisited: Convergence analysis. IEEE Transactions on Neural Networks, 17(6), 1370–1381.CrossRefGoogle Scholar
  24. 24.
    Sakaguchi, Y., Ozawa, S., & Kotani, M. (2002) Feature extraction using supervised independent component analysis by maximizing class distance. IEEJ Transactions on Electronics Information and Systems, 124(1), 2502–2506.Google Scholar
  25. 25.
    Snyder, K., Kline, J., Huang, H., & Ferris, D. (2015). Independent component analysis of gait-related movement artifact recorded using EEG electrodes during treadmill walking. Frontiers in Human Neuroscience, 9, 639.Google Scholar
  26. 26.
    Stone, J. (2005). Independent component analysis. Encyclopedia of Statistics in Behavioral Science, 2, 907–912.Google Scholar
  27. 27.
    Weston, J., & Watkins, C. (1998). Multi-class support vector machines. Royal Holloway University of London, 2, 907–912.Google Scholar
  28. 28.
    Yee, T. (2017). VGAM: Vector generalized linear and additive models. R package, version 1.0-4.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hsin-Hsiung Huang
    • 1
    Email author
  • Aubrey Condor
    • 1
  • Helen J. Huang
    • 2
  1. 1.Department of Statistics and Data ScienceUniversity of Central FloridaOrlandoUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of Central FloridaOrlandoUSA

Personalised recommendations