Mathematical Model of Mouse Ventricular Myocytes Overexpressing Adenylyl Cyclase Type 5

  • Vladimir E. BondarenkoEmail author
Part of the Emerging Topics in Statistics and Biostatistics book series (ETSB)


A compartmentalized mathematical model of transgenic (TG) mouse ventricular myocytes overexpressing adenylyl cyclase type 5 was developed. The model describes well β1- and β2-adrenergic signaling systems consisting of β1- and β2-adrenergic receptors (β1-ARs and β2-ARs), stimulatory and inhibitory G proteins (Gs and Gi), adenylyl cyclases types 4–7 (AC4–7), phosphodiesterases type 2–4 (PDE2–4), protein kinase A (PKA), protein phosphatases type 1 and 2A (PP1 and PP2A), G-protein receptor kinase type 2 (GRK2), heat-stable protein kinase inhibitor (PKI), and the inhibitor-1 (I-1). We found that the overexpression of AC5 resulted in an increased basal cAMP production, leading to an increased activation of PKA, prolongation of the action potential, and increased [Ca2+]i transient. Simulation results suggest blunted response of TG ventricular cells to the stimulation of β-adrenergic signaling system with isoproterenol comparing to wild type (WT) cells. Simulations of spontaneous Ca2+ release showed larger magnitudes of DADs in TG as compared to WT mice. Modeling data were compared to the experimental data obtained from TG mice overexpressing AC5 as well as to the simulations obtained with the mathematical model for WT mice.


Transgenic mice β1- and β2-adrenergic receptors Delayed afterdepolarizations Phosphodiesterases Protein kinase A Isoproterenol 


  1. 1.
    Keys, J. R., & Koch, W. J. (2004). The adrenergic pathway and heart failure. Recent Progress in Hormone Research, 59, 13–30.CrossRefGoogle Scholar
  2. 2.
    Koch, W. J., Lefkowitz, R. J., & Rockman, H. A. (2000). Functional consequences of altering myocardial adrenergic receptor signaling. Annual Review of Physiology, 62, 237–260.CrossRefGoogle Scholar
  3. 3.
    Nerbonne, J. M. (2014). Mouse models of arrhythmogenic cardiovascular disease: Challenges and opportunities. Current Opinion in Pharmacology, 15, 107–114.CrossRefGoogle Scholar
  4. 4.
    Brodde, O. E., & Michel, M. C. (1999). Adrenergic and muscarinic receptors in the human heart. Pharmacological Reviews, 51, 651–689.Google Scholar
  5. 5.
    Engelhardt, S., Hein, L., Wiesmann, F., & Lohse, M. J. (1999). Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 7059–7064.CrossRefGoogle Scholar
  6. 6.
    Milano, C. A., Allen, L. F., Rockman, H. A., Dolber, P. C., McMinn, T. R., Chien, K. R., Johnson, T. D., Bond, R. A., & Lefkowitz, R. J. (1994). Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science, 264, 582–586.CrossRefGoogle Scholar
  7. 7.
    Liggett, S. B., Tepe, N. M., Lorenz, J. N., Canning, A. M., Jantz, T. D., Mitarai, S., Yatani, A., & Dorn, G. W., II. (2000). Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts. Critical role for expression level. Circulation, 101, 1707–1714.CrossRefGoogle Scholar
  8. 8.
    Ho, D., Yan, L., Iwatsubo, K., Vatner, D. E., & Vatner, S. F. (2010). Modulation of β-adrenergic receptor signaling in heart failure and longevity: Targeting adenylyl cyclase type 5. Heart Failure Reviews, 15, 495–512.CrossRefGoogle Scholar
  9. 9.
    Lai, L., Yan, L., Gao, S., Hu, C. L., Ge, H., Davidow, A., Park, M., Bravo, C., Iwatsubo, K., Ishikawa, Y., Auwerx, J., Sinclair, D. A., Vatner, S. F., & Vatner, D. E. (2013). Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway. Circulation, 127, 1692–1701.CrossRefGoogle Scholar
  10. 10.
    Vatner, S. F., Park, M., Yan, L., Lee, G. J., Lai, L., Iwatsubo, K., Ishikawa, Y., Pessin, J., & Vatner, D. E. (2013). Adenylyl cyclase 5 in cardiac disease, metabolism, and aging. American Journal of Physiology. Heart and Circulatory Physiology, 305, H1–H8.CrossRefGoogle Scholar
  11. 11.
    Zhao, Z., Babu, G. J., Wen, H., Fefelova, N., Gordan, R., Sui, X., Yan, L., Vatner, D. E., Vatner, S. F., & Xie, L. H. (2015). Overexpression of adenylyl cyclase type 5 (AC5) confers a proarrhythmic substrate to the heart. American Journal of Physiology. Heart and Circulatory Physiology, 308, H240–H249.CrossRefGoogle Scholar
  12. 12.
    Bondarenko, V. E. (2014). A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes. PLoS One, 9, e89113.CrossRefGoogle Scholar
  13. 13.
    Bondarenko, V. E., Szigeti, G. P., Bett, G. C. L., Kim, S. J., & Rasmusson, R. L. (2004). Computer model of action potential of mouse ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 287, H1378–H1403.CrossRefGoogle Scholar
  14. 14.
    Petkova-Kirova, P. S., London, B., Salama, G., Rasmusson, R. L., & Bondarenko, V. E. (2012). Mathematical modeling mechanisms of arrhythmias in transgenic mouse heart overexpressing TNF-α. American Journal of Physiology. Heart and Circulatory Physiology, 302, H934–H952.CrossRefGoogle Scholar
  15. 15.
    Rozier, K., & Bondarenko, V. E. (2017). Distinct physiological effects of β1- and β2-adrenoceptors in mouse ventricular myocytes: Insights from a compartmentalized mathematical model. American Journal of Physiology. Cell Physiology, 312, C595–C623.CrossRefGoogle Scholar
  16. 16.
    Tang, T., Lai, N. C., Roth, D. M., Drumm, J., Guo, T., Lee, K. W., Han, P. L., Dalton, N., & Gao, M. H. (2006). Adenylyl cyclase type V deletion increases basal left ventricular function and reduces left ventricular contractile responsiveness to β-adrenergic stimulation. Basic Research in Cardiology, 101, 117–126.CrossRefGoogle Scholar
  17. 17.
    Luo, W., Grupp, I. L., Harrer, J., Ponniah, S., Grupp, G., Duffy, J. J., Doetschman, T., & Kranias, E. G. (1994). Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of β-agonist stimulation. Circulation Research, 75, 401–409.CrossRefGoogle Scholar
  18. 18.
    Kadambi, V. J., Ponniah, S., Harrer, J. M., Hoit, B. D., Dorn, G. W., II, Walsh, R. A., & Kranias, E. G. (1996). Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. The Journal of Clinical Investigation, 97, 533–539.CrossRefGoogle Scholar
  19. 19.
    Li, G. R., Feng, J., Wang, Z., Fermini, B., & Nattel, S. (1996). Adrenergic modulation of ultrarapid delayed rectifier K+ current in human atrial myocytes. Circulation Research, 78, 903–915.CrossRefGoogle Scholar
  20. 20.
    Gaborit, N., Le Bouter, S., Szuts, V., Varro, A., Escande, D., Nattel, S., & Demolombe, S. (2007). Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. The Journal of Physiology, 582, 675–693.CrossRefGoogle Scholar
  21. 21.
    Brandt, M. C., Priebe, L., Böhle, T., Südkamp, M., & Beuckelmann, D. J. (2000). The ultrarapid and the transient outward K+ current in human atrial fibrillation. Their possible role in postoperative atrial fibrillation. Journal of Molecular and Cellular Cardiology, 32, 1885–1896.CrossRefGoogle Scholar
  22. 22.
    Kodirov, S. A., Brunner, M., Nerbonne, J. M., Buckett, P., Mitchell, G. F., & Koren, G. (2004). Attenuation of IK,slow1 and IK,slow2 in Kv1/Kv2DN mice prolongs APD and QT intervals but does not suppress spontaneous or inducible arrhythmias. American Journal of Physiology. Heart and Circulatory Physiology, 286, H368–H374.CrossRefGoogle Scholar
  23. 23.
    London, B., Guo, W., Pan, X. H., Lee, J. S., Shusterman, V., Rocco, C. J., Logothetis, D. A., Nerbonne, J. M., & Hill, J. A. (2001). Targeted replacement of Kv1.5 in the mouse leads to loss of the 4-aminopyridine-sensitive component of IK,slow and resistance to drug-induced QT prolongation. Circulation Research, 88, 940–946.CrossRefGoogle Scholar
  24. 24.
    Wilson, G. G., O’Neill, C. A., Sivaprasadarao, A., Findlay, J. B. C., & Wray, D. (1994). Modulation by protein kinase A of a cloned rat brain potassium channel expressed in Xenopus oocytes. Pflügers Archiv, 428, 186–193.CrossRefGoogle Scholar
  25. 25.
    Zhou, M. H., Yang, G., Jiao, S., Hu, C. L., & Mei, Y. A. (2012). Cholesterol enhances neuron susceptibility to apoptotic stimuli via cAMP/PKA/CREb-dependent up-regulation of Kv2.1. Journal of Neurochemistry, 120, 502–514.CrossRefGoogle Scholar
  26. 26.
    Tepe, N. M., & Liggett, S. B. (1999). Transgenic replacement of type V adenylyl cyclase identifies a critical mechanism of β-adrenergic receptor dysfunction in the Gαq overexpressing mouse. FEBS Letters, 458, 236–240.CrossRefGoogle Scholar
  27. 27.
    Lemire, I., Allen, B. G., Rindt, H., & Hebert, T. E. (1998). Cardiac-specific overexpression of α1BAR regulates βAR activity via molecular crosstalk. Journal of Molecular and Cellular Cardiology, 30, 1827–1839.CrossRefGoogle Scholar
  28. 28.
    Iwatsubo, K., Bravo, C., Uechi, M., Baljinnyam, E., Nakamura, T., Umemura, M., Lai, L., Gao, S., Yan, L., Zhao, X., Park, M., Qiu, H., Okumura, S., Iwatsubo, M., Vatner, D. E., Vatner, S. F., & Ishikawa, Y. (2012). Prevention of heart failure in mice by an antiviral agent that inhibits type 5 cardiac adenylyl cyclase. American Journal of Physiology. Heart and Circulatory Physiology, 302, H2622–H2628.CrossRefGoogle Scholar
  29. 29.
    Nerbonne, J. M., Nichols, C. G., Schwarz, T. L., & Escande, D. (2001). Genetic manipulation of cardiac K+ channel function in mice: What have we learned, and where do we go from here? Circulation Research, 89, 944–956.CrossRefGoogle Scholar
  30. 30.
    Guellich, A., Gao, S., Hong, C., Yan, L., Wagner, T. E., Dhar, S. K., Ghaleh, B., Hittinger, L., Iwatsubo, K., Ishikawa, Y., Vatner, S. F., & Vatner, D. E. (2010). Effects of cardiac overexpression of type 6 adenylyl cyclase affects on the response to chronic pressure overload. American Journal of Physiology. Heart and Circulatory Physiology, 299, H707–H712.CrossRefGoogle Scholar
  31. 31.
    Gaudin, C., Ishikawa, Y., Wight, D. C., Mahdavi, V., Nadal-Ginard, B., Wagner, T. E., Vatner, D. E., & Homcy, C. J. (1995). Overexpression of G protein in the hearts of transgenic mice. The Journal of Clinical Investigation, 95, 1676–1683.CrossRefGoogle Scholar
  32. 32.
    Rozier, K., & Bondarenko, V. E. (2018). Mathematical modeling physiological effects of the overexpression of β2-adrenoceptors in mouse ventricular myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 314, H643–H658.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsGeorgia State UniversityAtlantaUSA
  2. 2.Neuroscience Institute, Georgia State UniversityAtlantaUSA

Personalised recommendations