Advertisement

Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance

  • Toan Duc Bui
  • Li WangEmail author
  • Jian Chen
  • Weili Lin
  • Gang LiEmail author
  • Dinggang ShenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11795)

Abstract

The deep convolutional neural network has achieved outstanding performance on neonatal brain MRI tissue segmentation. However, it may fail to produce reasonable results on unseen datasets that have different imaging appearance distributions with the training data. The main reason is that deep learning models tend to have a good fitting to the training dataset, but do not lead to a good generalization on the unseen datasets. To address this problem, we propose a multi-task learning method, which simultaneously learns both tissue segmentation and geodesic distance regression to regularize a shared encoder network. Furthermore, a dense attention gate is explored to force the network to learn rich contextual information. By using three neonatal brain datasets with different imaging protocols from different scanners, our experimental results demonstrate superior performance of our proposed method over the existing deep learning-based methods on the unseen datasets.

Keywords

Neonatal brain segmentation Multi-task learning Attention Geodesic distance 

Notes

Acknowledgment

This work was supported in part by NIH Grants MH107815, MH109773, MH116225, and MH117943.

References

  1. 1.
    Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_49CrossRefGoogle Scholar
  3. 3.
    Criminisi, A., Sharp, T., Blake, A.: GeoS: geodesic image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 99–112. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88682-2_9CrossRefGoogle Scholar
  4. 4.
    Dangi, S., Yaniv, Z., Linte, C.: A distance map regularized CNN for cardiac cine MR image segmentation. arXiv preprint arXiv:1901.01238 (2019)
  5. 5.
    Davatzikos, C.: Machine learning in neuroimaging: progress and challenges. NeuroImage 197, 652 (2018)CrossRefGoogle Scholar
  6. 6.
    Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE CVPR, pp. 7132–7141 (2018)Google Scholar
  7. 7.
    Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE CVPR, pp. 4700–4708 (2017)Google Scholar
  8. 8.
    Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
  9. 9.
    Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11726-9_28CrossRefGoogle Scholar
  10. 10.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  11. 11.
    Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel squeeze & excitation in fully convolutional networks. arXiv preprint arXiv:1803.02579 (2018)
  12. 12.
    Wang, G., et al.: DeepIGeoS: a deep interactive geodesic framework for medical image segmentation. IEEE Trans. PAMI 41(7), 1559–1572 (2018)CrossRefGoogle Scholar
  13. 13.
    Wang, L., et al.: Volume-based analysis of 6-month-old infant brain MRI for autism biomarker identification and early diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 411–419. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00931-1_47CrossRefGoogle Scholar
  14. 14.
    Wang, L., et al.: Benchmark on automatic 6-month-old infant brain segmentation algorithms: the iSeg-2017 challenge. IEEE Trans. Med. Imaging 38(9), 2219–2230 (2019) CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.School of Information Science and EngineeringFujian University of TechnologyFuzhouChina
  3. 3.Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations