Advertisement

Near-Optimal Control with Input Saturation

  • Yinyan Zhang
  • Shuai LiEmail author
  • Xuefeng Zhou
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 265)

Abstract

In this chapter, a time-scale expansion-based scheme is presented for approximately solving the optimal control problem of continuous-time underactuated nonlinear systems subject to input constraints and system dynamics. By time-scale Taylor approximation of the original performance index, the optimal control problem is relaxed into an approximated optimal control problem. Based on the system dynamics, the problem is further reformulated as a quadratic program, which is solved by a projection neural network. Theoretical analysis on the closed-loop system synthesized by the controlled system and the projection neural network is conducted, which reveals that, under certain conditions, the closed-loop system possesses exponential stability and the original performance index converges to zero as time tends to infinity. In addition, two illustrative examples, which are based on a flexible joint manipulator and an underactuacted ship, are provided to validate the theoretical results and demonstrate the efficacy and superiority of the presented control scheme.

References

  1. 1.
    Liu, Y.-J., Tong, S.: Optimal control-based adaptive NN design for a class of nonlinear discrete-time block-triangular systems. IEEE Trans. Cybern. 46(11), 2670–2680 (2016)CrossRefGoogle Scholar
  2. 2.
    Liu, Y.-J., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24(1), 16–28 (2016)CrossRefGoogle Scholar
  3. 3.
    Lewis, F.L., Syrmos, V.L.: Optimal Control. Wiley, New York (1995)Google Scholar
  4. 4.
    Chen, Z., Jagannathan, S.: Generalized Hamilton–Jacobi–Bellman formulation-based neural network control of affine nonlinear discrete-time systems. IEEE Trans. Neural Netw. 19(1), 90–106 (2008)CrossRefGoogle Scholar
  5. 5.
    Mayne, D.Q.: Model predictive control: recent developments and future promise. Automatica 50(12), 2967–2986 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chen, W.H., Ballance, D.J., Gawthrop, P.J.: Optimal control of nonlinear systems: a predictive control approach. Automatica 39(4), 633–641 (2003)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hedjar, R., Toumi, R., Boucher, P., Dumur, D.: Finite horizon nonlinear predictive control by the Taylor approximation application to robot tracking trajectory. Int. J. Appl. Math. Comput. Sci. 15(4), 527–540 (2005)Google Scholar
  8. 8.
    Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Trans. Autom. Contro 35(7), 814–824 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Han, D., Shi, L.: Guaranteed cost control of affine nonlinear systems via partition of unity method. Automatica 49(2), 660–666 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lian, C., Xu, X., Chen, H., He, H.: Near-optimal tracking control of mobile robots via receding-horizon dual heuristic programming. IEEE Trans. Cybern. 46(11), 2484–2496 (2016)CrossRefGoogle Scholar
  11. 11.
    Li, H., Shi, Y., Yan, W.: On neighbor information utilization in distributed receding horizon control for consensus-seeking. IEEE Trans. Cybern. 46(9), 2019–2027 (2016)CrossRefGoogle Scholar
  12. 12.
    Yang, Q., Jagannathan, S.: Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 377–390 (2012)Google Scholar
  13. 13.
    Du, H., Zhang, N.: Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint. IEEE Trans. Fuzzy Syst. 17(2), 343–356 (2009)CrossRefGoogle Scholar
  14. 14.
    Liu, Y.-J., Gao, Y., Tong, S., Philip Chen, C.L.: A unified approach to adaptive neural control for nonlinear discrete-time systems with nonlinear dead-zone input. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 39–150 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ma, Y., Borrelli, F., Hencey, B., Coffey, B., Bengea, S., Haves, P.: Model predictive control for the operation of building cooling systems. IEEE Trans. Control Syst. Technol. 20(3), 796–803 (2012)Google Scholar
  16. 16.
    Han, H.G., Wu, X.L., Qiao, J.F.: Real-time model predictive control using a self-organizing neural network. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1425–1436 (2013)Google Scholar
  17. 17.
    Lu, C.H.: Design and application of stable predictive controller using recurrent wavelet neural networks. IEEE Trans. Ind. Electron. 56(9), 3733–3742 (2009)CrossRefGoogle Scholar
  18. 18.
    Peng, H., Nakano, K., Shioya, H.: Nonlinear predictive control using neural nets-based local linearization ARX model-stability and industrial application. IEEE Trans. Control Syst. Techno. 15(1), 130–143 (2017)CrossRefGoogle Scholar
  19. 19.
    Li, Z., Xiao, H., Yang, C., Zhao, Y.: Model predictive control of nonholonomic chained systems using general projection neural networks optimization. IEEE Trans. Syst. Man Cybern. Syst. 45(10), 1313–1321 (2015)CrossRefGoogle Scholar
  20. 20.
    Lu, P.: Constrained tracking control of nonlinear systems. Automatica 27(5), 305–314 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Li, X., Rakkiyappan, R., Velmurugan, G.: Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays. Inform. Sci. 294, 645–665 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Ge, S.S., Lee, T.H.: A unified quadratic-programming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. IEEE Trans. Syst. Man Cybern. B 34(5), 2126–2132 (2004)CrossRefGoogle Scholar
  23. 23.
    Li, X., Regan, D.O., Akca, H.: Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays. IMA J. Appl. Math. 80(1), 85–99 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Jin, L., Zhang, Y., Li, S., Zhang, Y.: Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans. Ind. Electron. 63(11), 6978–6988 (2016)CrossRefGoogle Scholar
  25. 25.
    Xiao, L.: A nonlinearly-activated neurodynamic model and its finite-time solution to equality-constrained quadratic optimization with nonstationary coefficients. Appl. Soft Comput. 40, 252–259 (2016)CrossRefGoogle Scholar
  26. 26.
    Qin, S., Xue, X.: A two-layer recurrent neural network for nonsmooth convex optimization problems. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1149–1160 (2015)Google Scholar
  27. 27.
    Zhang, Z., Zhang, Y.: Variable joint-velocity limits of redundant robot manipulators handled by quadratic programming. IEEE/ASME Trans. Mechatronics 18(2), 674–686 (2013)CrossRefGoogle Scholar
  28. 28.
    Li, X., Song, S.: Impulsive control for existence, uniqueness and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays. IEEE Trans. Neural Netw. 24, 868–877 (2013)Google Scholar
  29. 29.
    Li, S., Chen, S., Liu, B., Li, Y., Liang, Y.: Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing 91, 1–10 (2012)CrossRefGoogle Scholar
  30. 30.
    Li, S., Cui, H., Li, Y., Liu, B., Lou, Y.: Decentralized control of collaborative redundant manipulators with partial command coverage via locally connected recurrent neural networks. Neural Comput. Appl. 23(3), 1051–1060 (2013)CrossRefGoogle Scholar
  31. 31.
    Li, S., He, J., Li, Y., Rafique, M.U.: Distributed recurrent neural networks for cooperative control of manipulators: A game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 415–426 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Jin, L., Li, S., La, H.M., Luo, X.: Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 64(6), 4710–4720 (2017)CrossRefGoogle Scholar
  33. 33.
    Li, Y., Li, S., Hannaford, B.: A novel recurrent neural network for improving redundant manipulator motion planning completeness. ICRA, 2956–2961 (2018)Google Scholar
  34. 34.
    Zhang, Y., Li, S.: A neural controller for image-based visual servoing of manipulators with physical constraints. IEEE Trans. Neural Netw. Learning Syst. 29(11), 5419–5429 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Li, S., Zhou, M., Luo, X.: Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans. Neural Netw. Learning Syst. 29(10), 4791–4801 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Li, S., Wang, H., Rafique, M.U.: A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans. Neural Netw. Learning Syst. 29(5), 1908–1918 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Jin, L., Li, S., Luo, X., Li, Y., Qin, B.: Neural dynamics for cooperative control of redundant robot manipulators. IEEE Trans. Ind. Inform. 14(9), 3812–3821 (2018)CrossRefGoogle Scholar
  38. 38.
    Li, J., Zhang, Y., Li, S., Mao, M.: New discretization-formula-based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans. Ind. Inform. 14(8), 3416–3425 (2018)CrossRefGoogle Scholar
  39. 39.
    Chen, D., Zhang, Y., Li, S.: Tracking control of robot manipulators with unknown models: A jacobian-matrix-adaption method. IEEE Trans. Ind. Inform. 14(7), 3044–3053 (2018)CrossRefGoogle Scholar
  40. 40.
    Zhang, Y., Li, S., Gui, J., Luo, X.: Velocity-level control with compliance to acceleration-level constraints: A novel scheme for manipulator redundancy resolution. IEEE Trans. Ind. Inform. 14(3), 921–930 (2018)CrossRefGoogle Scholar
  41. 41.
    Xiao, L., Liao, B., Li, S., Zhang, Z., Ding, L., Jin, L.: Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator. IEEE Trans. Ind. Inform. 14(1), 98–105 (2018)CrossRefGoogle Scholar
  42. 42.
    Zhang, Y., Chen, S., Li, S., Zhang, Z.: Adaptive projection neural network for kinematic control of redundant manipulators with unknown physical parameters. IEEE Trans. Ind. Electron. 65(6), 4909–4920 (2018)CrossRefGoogle Scholar
  43. 43.
    Zhang, Z., Lin, Y., Li, S., Li, Y., Yu, Z., Luo, Y.: Tricriteria optimization-coordination motion of dual-redundant-robot manipulators for complex path planning. IEEE Trans. Control Syst. Technol. 26(4), 1345–1357 (2018)CrossRefGoogle Scholar
  44. 44.
    Jin, L., Li, S., Hu, B., Yi, C.: Dynamic neural networks aided distributed cooperative control of manipulators capable of different performance indices. Neurocomputing 291, 50–58 (2018)CrossRefGoogle Scholar
  45. 45.
    Jin, L., Li, S., Yu, J., He, J.: Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23–34 (2018)CrossRefGoogle Scholar
  46. 46.
    Chen, D., Zhang, Y., Li, S.: Zeroing neural-dynamics approach and its robust and rapid solution for parallel robot manipulators against superposition of multiple disturbances. Neurocomputing 275, 845–858 (2018)CrossRefGoogle Scholar
  47. 47.
    Li, S., Shao, Z., Guan, Y.: A dynamic neural network approach for efficient control of manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(5), 932–941 (2019)CrossRefGoogle Scholar
  48. 48.
    Zhang, Y., Li, S., Zhou, X.: Recurrent-neural-network-based velocity-level redundancy resolution for manipulators subject to a joint acceleration limit. IEEE Trans. Ind. Electron. 66(5), 3573–3582 (2019)CrossRefGoogle Scholar
  49. 49.
    Zhang, Z., Chen, S., Li, S.: Compatible convex-nonconvex constrained QP-based dual neural networks for motion planning of redundant robot manipulators. IEEE Trans. Control Syst. Technol. 27(3), 1250–1258 (2019)CrossRefGoogle Scholar
  50. 50.
    Xu, Z., Li, S., Zhou, X., Yan, W., Cheng, T., Huang, D.: Dynamic neural networks based kinematic control for redundant manipulators with model uncertainties. Neurocomputing 329, 255–266 (2019)CrossRefGoogle Scholar
  51. 51.
    Li, S., Zhang, Y., Jin, L.: Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. (In Press)Google Scholar
  52. 52.
    Zhang, Y., Wang, J., Xia, Y.: A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits. IEEE Trans. Neural Netw. 14(3), 658–667 (2003)CrossRefGoogle Scholar
  53. 53.
    Zhang, Z., Li, Z., Zhang, Y., Luo, Y., Li, Y.: Neural-dynamic-method-based dual-arm CMG scheme with time-varying constraints applied to humanoid robots. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3251–3262 (2015)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Zhang, Y., Li, W., Zhang, Z.: Physical-limits-constrained minimum velocity norm coordinating scheme for wheeled mobile redundant manipulators. Robotica 33(6), 1325–1350 (2015)CrossRefGoogle Scholar
  55. 55.
    Mohammed, A.M., Li, S.: Dynamic neural networks for kinematic redundancy resolution of parallel stewart platforms. IEEE Trans. Cybern. 46(7), 1538–1550 (2016)CrossRefGoogle Scholar
  56. 56.
    Jin, L., Zhang, Y.: G2-type SRMPC scheme for synchronous manipulation of two redundant robot Arms. IEEE Trans. Cybern. 45(2), 153–164 (2015)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Jin, L., Li, S., Xiao, L., Lu, R., Liao, B.: Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Trans. Syst. Man Cybern. Syst. (In Press).  https://doi.org/10.1109/TSMC.2017.2693400CrossRefGoogle Scholar
  58. 58.
    Li, S., Shao, Z., Guan, Y.: A dynamic neural network approach for efficient control of manipulators. IEEE Trans. Syst. Man Cybern. Syst. (In Press).  https://doi.org/10.1109/TSMC.2017.2690460CrossRefGoogle Scholar
  59. 59.
    Jin, L., Li, S.: Distributed task allocation of multiple robots: a control perspective. IEEE Trans. Syst. Man Cybern. Syst. (In Press).  https://doi.org/10.1109/TSMC.2016.2627579CrossRefGoogle Scholar
  60. 60.
    Chen, C.L.P., Wen, G.-X., Liu, Y.-J., Wang, F.-Y.: Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(6), 1217–1226 (2014)CrossRefGoogle Scholar
  61. 61.
    Wang, H.Q., Liu, X.P., Liu, K.F.: Robust adaptive neural tracking control for a class of stochastic nonlinear interconnected systems. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 510–523 (2016)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Chen, C.L.P., Liu, Y.-J., Wen, G.-X.: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44(5), 583–593 (2014)CrossRefGoogle Scholar
  63. 63.
    Liu, Y.-J., Tang, L., Tong, S., Chen, C.L.P.: Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1007–1018 (2015)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Liu, Y.-J., Tang, L., Tong, S., Chen, C.L.P., Li, D.-J.: Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 165–176 (2015)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Li, T., Duan, S., Liu, J., Wang, L., Huang, T.: A spintronic memristor-based neural network with radial basis function for robotic manipulator control implementation. IEEE Trans. Syst. Man Cybern. Syst. 46(4), 582–588 (2016)CrossRefGoogle Scholar
  66. 66.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, New Jersey (2002)zbMATHGoogle Scholar
  67. 67.
    Gao, Y., Wang, H., Liu, Y.-J.: Adaptive fuzzy control with minimal leaning parameters for electric induction motors. Neurocomputing 156, 143–150 (2015)CrossRefGoogle Scholar
  68. 68.
    Wang, H., Chen, B., Liu, X., Liu, K., Lin, C.: Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans. Cybern. 43(6), 2093–2104 (2013)CrossRefGoogle Scholar
  69. 69.
    Isidori, A.: Nonlinear Control Systems: An Introduction, 3rd edn. Springer, New York (1995)zbMATHCrossRefGoogle Scholar
  70. 70.
    Xia, Y.: Further results on global convergence and stability of globally projected dynamical systems. J. Optim. Theory Appl. 122(3), 627–649 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Wang, H., Shi, P., Li, H., Zhou, Q.: Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties. IEEE Trans. Cybern. (In Press)Google Scholar
  72. 72.
    Chen, C.L.P., Wen, G.-X., Liu, Y.-J., Liu, Z.: Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Trans. Cybern. 46(7), 1591–1601 (2016)CrossRefGoogle Scholar
  73. 73.
    Liu, Y.-J., Tong, S.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    He, W., Ge, W., Li, Y., Liu, Y.-J., Yang, C., Sun, C.: Model identification and control design for a humanoid robot. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 45–57 (2017)CrossRefGoogle Scholar
  75. 75.
    Wang, H., Liu, X., Liu, K.: Adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with non-lower triangular structure. Fuzzy Set Syst. 302, 101–120 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Chien, T., Chen, C., Huang, C.: Feedback linearization control and its application to mimo cancer immunotherapy. IEEE Trans. Control Syst. Technol. 18(4), 953–961 (2010)CrossRefGoogle Scholar
  77. 77.
    Zhang, Y., Li, S.: Predictive suboptimal consensus of multiagent systems with nonlinear dynamics. IEEE Trans. Syst. Man Cybern. Syst. (In Press).  https://doi.org/10.1109/TSMC.2017.2668440MathSciNetCrossRefGoogle Scholar
  78. 78.
    Allen, L.J.S.: An Introduction to Mathematical Biology. Pearson Education, New Jersey (2007)Google Scholar
  79. 79.
    Groves, K., Serrani, A.: Modeling and nonlinear control of a single-link flexible joint manipulator (2004)Google Scholar
  80. 80.
    Jiang, Z.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica 38(2), 301–309 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.College of Cyber SecurityJinan UniversityGuangzhouChina
  2. 2.School of Information Science and EngineeringLanzhou UniversityLanzhouChina
  3. 3.Guangdong Institute of Intelligent ManufacturingGuangdong Academy of ScienceGuangzhouChina

Personalised recommendations