Exercise and Thyroid Function

  • Dorina Ylli
  • Joanna Klubo-Gwiezdzinska
  • Leonard WartofskyEmail author
Part of the Contemporary Endocrinology book series (COE)


Thyroid hormone receptors are present in virtually every tissue in the body, thereby permitting an important physiologic role for the thyroid hormones, thyroxine (T4), and triiodothyronine (T3).

The aim of this chapter is to describe the effects of thyroid function on exercise tolerance with a special focus on cardiovascular, pulmonary, and skeletal muscle function as well as to describe the changes in the pituitary–thyroid axis induced by exercise.

Hypothyroidism is associated with impaired left ventricular diastolic function during exercise, blunted vasodilatation secondary to reduced endothelium-dependent vasodilatation, reduced pulmonary forced vital capacity and tidal volume at the anaerobic threshold, and, finally, impaired oxidative phosphorylation in mitochondria of skeletal muscle.

Hyperthyroidism is associated with increased left ventricular ejection fraction (LVEF) at rest, lack of an increase or even a drop in LVEF with exercise, increased oxygen demand, low efficiency of cardiopulmonary function, respiratory muscle weakness, and impaired work capacity.

Physical activity affects the pituitary–thyroid axis and the peripheral metabolism of thyroxine. Factors that mitigate alterations in thyroid hormone economy with exercise include age, baseline fitness, nutritional status, ambient temperature, altitude, as well as the time, intensity, and type of exercise performed. The most consistent finding is that reverse T3 tends to increase with exercise. This may reflect an adaptive mechanism aimed at more efficient energy expenditure.


Thyroid hormone Left ventricular ejection fraction Anaerobic threshold Subclinical hypothyroidism Thyroid axis 


  1. 1.
    Wartofsky L. The approach to the patient with thyroid disease. In: Becker KL, editor. Principles and practice of endocrinology and metabolism. 2nd ed. Philadelphia: Lippincott; 1995. p. 278–80.Google Scholar
  2. 2.
    Loucks AB, Callister R. Induction and prevention of low-T3 syndrome in exercising women. Am J Phys. 1993;264:924–30.Google Scholar
  3. 3.
    Leonard JL, Koehrle J. Intracellular pathways of iodothyronine metabolism. In: Braverman LE, Dtiger RD, editors. Werner and Ingbar’s the thyroid. 7th ed. Philadelphia: Lippincott; 1996. p. 125–60.Google Scholar
  4. 4.
    Motomura K, Brent GA. Mechanisms of thyroid hormone action: implications for the clinical manifestation of thyrotoxicosis. Endocrinol Metab Clin N Am. 1998;27:1–19.CrossRefGoogle Scholar
  5. 5.
    Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116:1725–35.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005;26:704–28.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dillmann WH. Cellular action of thyroid hormone on the heart. Thyroid. 2002;12:447–52.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bahouth SW, Cui X, Beauchamp MJ, et al. Thyroid hormone induces beta1-adrenergic receptor gene transcription through a direct repeat separated by five nucleotides. J Mol Cell Cardiol. 1997;29:3223–37.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zinman T, Shneyvays V, Tribulova N, et al. Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol. 2006;207:220–31.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schmidt BM, Martin N, Georgens AC, et al. Nongenomic cardiovascular effects of triiodothyronine in euthyroid male volunteers. J Clin Endocrinol Metab. 2002;87:1681–6.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hiroi Y, Kim H-H, Ying H, et al. Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A. 2006;103:14104–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Davis PJ, Davis FB. Nongenomic actions of thyroid hormone on the heart. Thyroid. 2002;12:459–4665.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang YG, Dedkova EN, Fiening JP, et al. Acute exposure to thyroid hormone increases Na+ current and intracellular Ca2+ in cat atrial myocytes. J Physiol. 2003;546:491–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Diniz GP, Carneiro-Ramos MS, et al. Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol. 2009;104:653–67.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Scanlan TS, Suchland KL, Hart ME, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med. 2004;10:638–42.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chiellini G, Frascarelli S, Ghelardoni S, et al. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J. 2007;21:1597–608.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Axelband F, Dias J, Ferrão FM, et al. Nongenomic signaling pathways triggered by thyroid hormones and their metabolite 3-iodothyronamine on the cardiovascular system. J Cell Physiol. 2011;226:21–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hoit BD, Khoury SF, Shao Y. Effects of thyroid hormone on cardiac beta-adrenergic responsiveness in conscious baboons. Circulation. 1997;96:592–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liang F, Webb P, Marimuthu A, Zhang S, Gardner DG. Triiodothyronine increases brain natriuretic peptide (BNP) gene transcription and amplifies endothelin-dependent BNP gene transcription and hypertrophy in neonatal rat ventricular myocytes. J Biol Chem. 2003;278:15073–83.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Marchant C, Brown L, Sernia C. Renin–angiotensin system in thyroid dysfunction in rats. J Cardiovasc Pharmacol. 1993;22:449–55.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Basset A, Blanc J, Messas E, et al. Renin–angiotensin system contribution to cardiac hypertrophy in experimental hyperthyroidism: an echocardiographic study. J Cardiovasc Pharmacol. 2001;37:163–72.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hong-Brown LQ, Deschepper CF. Effects of thyroid hormones on angiotensinogen gene expression in rat liver, brain, and cultured cells. Endocrinology. 1992;130:1231–7.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kobori H, Ichihara A, Suzuki H, et al. Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic nervous system. Am J Phys. 1997;272:227–32.Google Scholar
  24. 24.
    Bader M, Ganten D. Update on tissue renin–angiotensin systems. J Mol Med (Berl). 2008;86:615–21.CrossRefGoogle Scholar
  25. 25.
    D’Amore A, Black MJ, Thomas WG. The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension. 2005;46:1347–54.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Asahi T, Shimabukuro M, Oshiro Y, et al. Cilazapril prevents cardiac hypertrophy and postischemic myocardial dysfunction in hyperthyroid rats. Thyroid. 2001;11:1009–15.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pantos C, Paizis I, Mourouzis I, et al. Blockade of angiotensin II type 1 receptor diminishes cardiac hypertrophy, but does not abolish thyroxin-induced preconditioning. Horm Metab Res. 2005;37:500–4.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Su L, Dai Y, Deng W, et al. Renin–angiotensin system blocking agents reverse the myocardial hypertrophy in experimental hyperthyroid cardiomyopathy via altering intracellular calcium handling. Zhonghua Xin Xue Guan Bing Za Zhi. 2008;36:744 (Abstract).Google Scholar
  29. 29.
    Kenessey A, Ojamaa K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem. 2006;281:20666–772.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kuzman JA, O’Connell TD, Gerdes AM. Rapamycin prevents thyroid hormone-induced cardiac hypertrophy. Endocrinology. 2007;148:3477–84.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Weltman NY, Wang D, Redetzke RA, Gerdes AM. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function. PLoS One. 2012;7(10):e46655. Scholar
  32. 32.
    Kahaly GJ, Kampmann C, Mohr-Kahaly S. Cardiovascular hemodynamics and exercise tolerance in thyroid disease. Thyroid. 2002;12:473–81.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Amidi M, Leon DF, DeGroot WJ, et al. Effect of the thyroid state on myocardial contractility and ventricular ejection rate in man. Circulation. 1968;38:229–39.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wieshammer S, Keck FS, Waitzinger J, et al. Left ventricular function at rest and during exercise in acute hypothyroidism. Br Heart J. 1988;60:204–11.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Forfar JC, Muir AL, Toft AD. Left ventricular function in hypothyroidism: responses to exercise and beta adrenoceptor blockade. Br Heart J. 1982;48:278–84.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Smallridge RC, Goldman MH, Raines K, et al. Rest and exercise left ventricular ejection fraction before and after therapy in young adults with hyperthyroidism and hypothyroidism. Am J Cardiol. 1987;60:929–30.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Donaghue K, Hales I, Allwright S, et al. Cardiac function in acute hypothyroidism. Eur J Nucl Med. 1985;11:147–9.CrossRefGoogle Scholar
  38. 38.
    Biondi B, Fazio S, Palmieri EA, et al. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J Clin Endocrinol Metab. 1999;84:2064–7.CrossRefGoogle Scholar
  39. 39.
    Kahaly GJ. Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid. 2000;10:665–79.CrossRefGoogle Scholar
  40. 40.
    Akcakoyun M, Kaya H, Kargin R, Pala S, Emiroglu Y, Esen O, Karapinar H, Kaya Z, Esen AM. Abnormal left ventricular longitudinal functional reserve assessed by exercise pulsed wave tissue Doppler imaging in patients with subclinical hypothyroidism. J Clin Endocrinol Metab. 2009;94(8):2979–83.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pearce EN, Yang Q, Benjamin EJ, Aragam J, Vasan RS. Thyroid function and left ventricular structure and function in the Framingham heart study. Thyroid. 2010;20(4):369–73.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tadic M, Ilic S, Kostic N, Caparevic Z, Celic V. Subclinical hypothyroidism and left ventricular mechanics: a three-dimensional speckle tracking study. J Clin Endocrinol Metab. 2014;99(1):307–14.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Almas SP, Werneck FZ, Coelho EF, Teixeira PF, Vaisman M. Heart rate kinetics during exercise in patients with subclinical hypothyroidism. J Appl Physiol (1985). 2017;122(4):893–8.CrossRefGoogle Scholar
  44. 44.
    Brenta G, Mutti LA, Schnitman M, et al. Assessment of left ventricular diastolic function by radio-nuclide ventriculography at rest and exercise in subclinical hypothyroidism, and its response to L-thyroxine therapy. Am J Cardiol. 2003;91:1327–30.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bernstein R, Muller C, Midtbo K, et al. Silent myocardial ischemia in hypothyroidism. Thyroid. 1995;5:443–6.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Oflaz H, Kurt R, Cimen A, et al. Coronary flow reserve is also impaired in patients with subclinical hypothyroidism. Int J Cardiol. 2007;120:414–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Owen PJD, Rajiv C, Vinereanu D, et al. Subclinical hypothyroidism, arterial stiffness and myocardial reserve. J Clin Endocrinol Metab. 2006;9:2126–32.CrossRefGoogle Scholar
  48. 48.
    Biondi B, Kahaly GJ. Cardiovascular involvement in patients with different causes of hyperthyroidism. Nat Rev Endocrinol. 2010;6(8):431–43.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Klein I. Thyroid hormone and the cardiovascular system. Am J Med. 1988;88:631–7.CrossRefGoogle Scholar
  50. 50.
    Schwartz K, Lecarpenter Y, Martin JL, et al. Myosin isoenzyme distribution correlates with speed of myocardial contraction. J Mol Cell Cardiol. 1981;13:1071–5.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Parisi AF, Hamilton BP, Thomas CN, et al. The short cardiac pre-ejection period, an index of thyrotoxicosis. Circulation. 1974;49:900–4.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kahaly GJ, Wagner S, Nieswandt J, et al. Stress echocardiography in hyperthyroidism. J Clin Endocrinol Metab. 1999;84:2308–13.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kahaly GJ, Nieswandt J, Wagner S, et al. Ineffective cardiorespiratory function in hyperthyroidism. J Clin Endocrinol Metab. 1998;83:4075–8.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kahaly GJ, Nieswandt J, Mohr-Kahaly S. Cardiac risks of hyperthyroidism in the elderly. Thyroid. 1998;8:1165–9.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Peterson CR, Jones RC. Abnormal post-exercise electrocardiogram due to iatrogenic hyperthyroidism. Mil Med. 1969;134:694–7.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Foldes J, Istvanffy M, Halmagyi M, et al. Hyperthyroidism and the heart: study of the left ventricular function in preclinical hyperthyroidism. Acta Med Hung. 1986;43:23–9.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Dörr M, Ittermann T, Aumann N, Obst A, Reffelmann T, Nauck M, Wallaschofski H, Felix SB, Völzke H. Subclinical hyperthyroidism is not associated with progression of cardiac mass and development of left ventricular hypertrophy in middle-aged and older subjects: results from a 5-year follow-up. Clin Endocrinol. 2010;73(6):821–6.CrossRefGoogle Scholar
  58. 58.
    Kaminski G, Dziuk M, Szczepanek-Parulska E, Zybek-Kocik A, Ruchala M. Electrocardiographic and scintigraphic evaluation of patients with subclinical hyperthyroidism during workout. Endocrine. 2016;53:512–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Di Luigi L, Parisi A, Quaranta F, Romanelli F, Tranchita E, Sgrò P, Nardi P, Fattorini G, Cavaliere R, Pigozzi F, D’Armiento M, Lenzi A. Subclinical hyperthyroidism and sport eligibility: an exploratory study on cardiovascular pre-participation screening in subjects treated with levothyroxine for multinodular goiter. J Endocrinol Investig. 2009;32(10):825–31.CrossRefGoogle Scholar
  60. 60.
    Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, et al. Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res. 2010;85:560–70.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Napoli R, Guardasole V, Angelini V, et al. Acute effects of triiodothyronine on endothelial function in human subjects. J Clin Endocrinol Metab. 2007;92:250–4.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kuzman JA, Gerdes AM, Kobayashi S, et al. Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol. 2005;39:841–4.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fukuyama K, Ichiki T, Imayama I, et al. Thyroid hormone inhibits vascular remodelling through suppression of CAMP response element binding protein activity. Arterioscler Thromb Vasc Biol. 2006;26:2049–55.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gaynullina DK, Borzykh AA, Sofronova SI, Selivanova EK, Shvetsova AA, Martyanov AA, Kuzmin IV, Tarasova OS. Voluntary exercise training restores anticontractile effect of NO in coronary arteries of adult rats with antenatal/early postnatal hypothyroidism. Nitric Oxide. 2018;74:10–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    McAllister RM, Delp MD, Laughlin MH. A review of effects of hypothyroidism on vascular transportin skeletal muscle during exercise. Can J Appl Physiol. 1997;22:1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Delp MD, McAllister RM, Laughlin MH. Exercise training alters aortic vascular reactivity in hypothyroid rats. Am J Phys. 1995;268:1428–35.Google Scholar
  67. 67.
    Obuobie K, Smith J, Evans LM, et al. Increased central arterial stiffness in hypothyroidism. J Clin Endocrinol Metab. 2002;87:4662–6.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dagre AG, Lekakis JP, Papamichael CM, et al. Arterial stiffness is increased in subjects with hypothyroidism. Int J Cardiol. 2005;103:1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Duan Y, Peng W, Wang X, et al. Community based study of the association of subclinical thyroid dysfunction with blood pressure. Endocrine. 2009;35:136–42.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Walsh JP, Bremner AP, Bulsara MK, et al. Subclinical thyroid dysfunction and blood pressure: a community-based study. Clin Endocrinol. 2006;65:486–91.CrossRefGoogle Scholar
  71. 71.
    Takashima N, Niwa Y, Mannami T, et al. Characterization of subclinical thyroid dysfunction from cardiovascular and metabolic viewpoints: the Suita study. Circ J. 2007;71:191–5.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Iqbal A, Figenschau Y, Jorde R. Blood pressure in relation to serum thyrotropin: the tromso study. J Hum Hypertens. 2006;20:932–6.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Asvold BO, Bjoro T, Nilsen TI, et al. Association between blood pressure and serum thyroid-stimulating hormone concentration within the reference range: a population- based study. J Clin Endocrinol Metab. 2007;92:841–5.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Luboshitzky R, Aviv A, Herer P, et al. Risk factors for cardiovascular disease in women with subclinical hypothyroidism. Thyroid. 2002;12:421–5.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Faber J, Petersen L, Wiinberg N, et al. Hemodynamic changes after levothyroxine treatment in subclinical hypothyroidism. Thyroid. 2002;12:319–24.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Nagasaki T, Inaba M, Kumeda Y, et al. Increased pulse wave velocity in subclinical hypothyroidism. J Clin Endocrinol Metab. 2006;91:154–8.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lekakis J, Papamichael C, Alevizaki M, et al. Flow-mediated, endothelium dependent vasodilatation is impaired in subjects with hypothyroidism, borderline hypothyroidism, and high normal serum thyrotropin (TSH) values. Thyroid. 1997;7:411–4.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Yazici M, Gorgulu S, Sertbas Y, et al. Effects of thyroxin therapy on cardiac function in patients with subclinical hypothyroidism: index of myocardial performance in the evaluation of left ventricular function. Int J Cardiol. 2004;95:135–43.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Taddei S, Caraccio N, Virdis A, et al. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab. 2003;88:3731–7.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Xiang G, Sun H, Hou J. Changes in endothelial function and its association with plasma osteoprotegerin in hypothyroidism with exercise induced silent myocardial ischaemia. Clin Endocrinol. 2008;69:799–803.CrossRefGoogle Scholar
  81. 81.
    Hofbauer LC, Kluger S, Kuhne CA, et al. Detection and characterization of RANK ligand and osteoprotegerin in the thyroid gland. J Cell Biochem. 2002;86:642–50.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Guang-da X, Hong-yan C, Xian-mei Z. Changes in endothelium-dependent arterial dilation before and after subtotal thyroidectomy in subjects with hyperthyroidism. Clin Endocrinol. 2004;61:400–4.CrossRefGoogle Scholar
  83. 83.
    Ojamaa K, Klemperer JD, Klein I. Acute effects of thyroid hormone on vascular smooth muscle. Thyroid. 1996;6:505–12.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Graettinger JS, Muenster JJ, Selverstone LA, et al. A correlation of clinical and hemodynamic studies in patients with hyperthyroidism with and without congestive heart failure. J Clin Invest. 1959;38:1316–27.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Theilen EO, Wilson WR. Hemodynamic effects of peripheral vasoconstriction in normal and thyrotoxic patients. J Appl Physiol. 1967;22:207–10.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Völzke H, Ittermann T, Schmidt CO, et al. Subclinical hyperthyroidism and blood pressure in a -population-based prospective cohort study. Eur J Endocrinol. 2009;161:615–21.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kimura H, Kawagoe Y, Kaneko N, et al. Low efficiency of oxygen utilization during exercise in hyperthyroidism. Chest. 1996;110:1264–70.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Silva LE. Thermogenic mechanism and their hormonal regulation. Physiol Res. 2006;86:435–64.Google Scholar
  89. 89.
    Kaciuba-Uscilko H, Brzezinska Z, Kruk B, et al. Thyroid hormone deficiency and muscle metabolism during light and heavy exercise in dogs. Pflugers Arch. 1988;412:366–7.CrossRefGoogle Scholar
  90. 90.
    Ramsay ID. Muscle dysfunction in hyperthyroidism. Lancet. 1966;2:931–4.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    McAllister RM, Delp MD, Laughlin MH. Muscle blood flow during exercise in sedentary and trained hypothyroid rats. Am J Phys. 1995;269:949–54.Google Scholar
  92. 92.
    Wieshammer S, Keck FS, Waitzinger J. Acute hypothyroidism slows the rate of left ventricular -diastolic relaxation. Can J Physiol Pharmacol. 1989;67:1007–10.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    McAllister RM, Ogilvie RW, Terjung RL. Functional and metabolic consequences of skeletal muscle remodeling in hypothyroidism. Am J Phys. 1991;260:272–9.Google Scholar
  94. 94.
    McAllister RM, Sansone JC, Laughlin MH. Effects of hyperthyroidism on muscle blood flow during exercise in the rat. Am J Phys. 1995;268:330–5.Google Scholar
  95. 95.
    Caiozzo VJ, Haddad F. Thyroid hormone: modulation of muscle structure, function, and adaptive responses to mechanical loading. Exerc Sport Sci Rev. 1996;24:321–61.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    McCarthy JJ, Vyas DR, Tsika GL, et al. Segregated regulatory elements direct beta-myosin heavy chain expression in response to altered muscle activity. J Biol Chem. 1999;274:14270–9.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Górecka M, Synak M, Brzezińska Z, Dąbrowski J, Żernicka E. Effect of triiodothyronine (T3) excess on fatty acid metabolism in the soleus muscle from endurance-trained rats. Biochem Cell Biol. 2016;94(2):101–8.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Bocco BM, Louzada RA, Silvestre DH, Santos MC, Anne-Palmer E, Rangel IF, Abdalla S, Ferreira AC, Ribeiro MO, Gereben B, Carvalho DP, Bianco AC, Werneck-de-Castro JP. Thyroid hormone activation by type 2 deiodinase mediates exercise-induced peroxisome proliferator-activated receptor-γ coactivator-1α expression in skeletal muscle. J Physiol. 2016;594(18):5255–69.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Martin WH, Spina RJ, Korte E, et al. Mechanisms of impaired exercise capacity in short duration experimental hyperthyroidism. J Clin Invest. 1991;88:2047–53.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Venditti P, Bari A, Di Stefano L, Di Meo S. Effect of T3 on metabolic response and oxidative stress in skeletal muscle from sedentary and trained rats. Free Radic Biol Med. 2009;46(3):360–6.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Fidale TM, Antunes HKM, Roever L, Gonçalves A, Puga GM, Silva RPM, de Resende FN, de Souza FR, Fidale BM, Lizardo FB, Resende ES. Leucine supplementation improves effort tolerance of rats with hyperthyroidism. Front Physiol. 2018;9:1632.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Sukp J. Alterations of Ca2+ uptake and Ca2+ -activated ATPase of cardiac sarcoplasmic reticulum in hyper- and hypothyroidism. Biochim Biophys Acta. 1971;252:324–37.CrossRefGoogle Scholar
  103. 103.
    Graig FA, Smith JC. Serum creatinine phosphokinase activity in altered thyroid states. J Clin Endocrinol Metab. 1965;25:723–31.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Emser W, Schimrigk K. Myxedema myopathy: a case report. Eur Neurol. 1977;16:286.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Salehi N, Agoston E, Munir I, Thompson GJ. Rhabdomyolysis in a patient with severe hypothyroidism. Am J Case Rep. 2017;18:912–8.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Zhou C, Lai S, Xie Y, Zhang S, Lu Y. Rhabdomyolysis in a patient complicated with hypopituitarism and multiple organ dysfunction syndrome and the literature review. Am J Emerg Med. 2018;36(9):1723.e1–1723.e6. Epub 2018 Jun 7.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Riggs JE. Acute exertional rhabdomyolysis in hypothyroidism: the result of a reversible defect in glycogenolysis. Mil Med. 1990;155:171–2.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Klein I, Parker M, Shebert R. Hypothyroidism presenting as muscle stiffness and pseudohypertrophy: Hoffmann’s syndrome. Am J Med. 1981;70:891–4.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Monzani F, Caraccio N, Siciliano G, et al. Clinical and biochemical features of muscle dysfunction in subclinical hypothyroidism. J Clin Endocrinol Metab. 1997;82:3315–8.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Khushu S, Rana P, Sekhri T, et al. Bio-energetic impairment in human calf muscle in thyroid -disorders: a 31P MRS study. Magn Reson Imaging. 2010;28:683–9.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Kaminsky P, Robin-Lherbier B, Brunotte F, et al. Energetic metabolism in hypothyroid skeletal muscle, as studied by phosphorous magnetic resonance spectroscopy. J Clin Endocrinol Metab. 1992;74:124–9.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Bose S, French S, Evans FJ, et al. Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate. J Biol Chem. 2003;278:39155–65.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Haluzik M, Nedvidkova J, Bartak V, et al. Effects of hypo- and hyperthyroidism on noradrenergic activity and glycerol concentrations in human subcutaneous abdominal adipose tissue assessed with microdialysis. J Clin Endocrinol Metab. 2003;88:5605–8.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Rana P, Sripathy G, Varshney A, Kumar P, Devi MM, Marwaha RK, Tripathi RP, Khushu S. Phosphorous magnetic resonance spectroscopy-based skeletal muscle bioenergetic studies in subclinical hypothyroidism. J Endocrinol Investig. 2012;35(2):129–34.Google Scholar
  115. 115.
    Maor E, Kivity S, Kopel E, Segev S, Sidi Y, Goldenberg I, Olchovsky D. Differences in heart rate profile during exercise among subjects with subclinical thyroid disease. Thyroid. 2013;23(10):1226–32.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Reuters VS, Teixeira Pde F, Vigário PS, Almeida CP, Buescu A, Ferreira MM, de Castro CL, Gold J, Vaisman M. Functional capacity and muscular abnormalities in subclinical hypothyroidism. Am J Med Sci. 2009;338(4):259–63.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Tanriverdi A, Ozcan Kahraman B, Ozsoy I, Bayraktar F, Ozgen Saydam B, Acar S, Ozpelit E, Akdeniz B, Savci S. Physical activity in women with subclinical hypothyroidism. J Endocrinol Investig. 2018;42:779.CrossRefGoogle Scholar
  118. 118.
    Nazar K, Chwalbinska-Moneta J, Machalla J, et al. Metabolic and body temperature changes during exercise in hyperthyroid patients. Clin Sci Mol Med. 1978;54:323–7.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Ramsay ID. Electromyography in thyrotoxicosis. Q J Med. 1965;34:255.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Asayama K, Kato K. Oxidative muscular injury and its relevance to hyperthyroidism. Free Radic Biol Med. 1990;8:293–303.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Fitts RH, Brimmer CJ, Troup JP, et al. Contractile and fatigue properties of thyrotoxic rat skeletal muscle. Muscle Nerve. 1984;7:470–7.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Ribeiro LF, Teixeira IP, Aparecido da Silva G, Dalia RA, Júnior MC, Bertolini NO, Rostom de Mello MA, Luciano E. Effects of swimming training on tissue glycogen content in experimental thyrotoxic rats. Can J Physiol Pharmacol. 2012;90(5):587–93.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Gubran C, Narain R, Malik L, Saeed SA. A young man presenting with paralysis after vigorous exercise. BMJ Case Rep. 2012;27:2012.Google Scholar
  124. 124.
    Kelley DE, Garhib H, Kennedy FP, et al. Thyrotoxic periodic paralysis: report of 10 cases and review of the electromyographic findings. Arch Intern Med. 1989;149:2597–600.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    McManis PG, Lambert EH, Daube JR. The exercise test in periodic paralysis. Muscle Nerve. 1986;9:704–10.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Jackson CE, Barohn RJ. Improvement of the exercise test after therapy in thyrotoxic periodic -paralysis. Muscle Nerve. 1992;15:1069–71.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Links TP, van der Hoeven JR. Improvement of the exercise test after therapy in thyrotoxic periodic paralysis. Muscle Nerve. 1993;16:1132–3.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Arimura K, Arimura Y, Ng AR, et al. Muscle membrane excitability after exercise in thyrotoxic periodic paralysis and thyrotoxicosis without periodic paralysis. Muscle Nerve. 2007;36:784–8.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Oh VM, Taylor EA, Yeo SH, et al. Cation transport across lymphocyte plasma membranes in euthyroid and thyrotoxic men with and without hypokalaemic periodic paralysis. Clin Sci (Lond). 1990;78:199–206.CrossRefGoogle Scholar
  130. 130.
    Falhammar H, Thorén M, Calissendorff J. Thyrotoxic periodic paralysis: clinical and molecular aspects. Endocrine. 2013;43(2):274–84.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Lichtstein DM, Arteaga RB. Rhabdomyolysis associated with hyperthyroidism. Am J Med Sci. 2006;332:103–5.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Alshanti M, Eledrisi MS, Jones E. Rhabdomyolysis associated with hyperthyroidism. Am J Emerg Med. 2001;19:317.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Summachiwakij S, Sachmechi I. Rhabdomyolysis induced by nonstrenuous exercise in a patient with graves’ disease. Case Rep Endocrinol. 2014;2014:286450.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Erkintalo M, Bendahan D, Mattéi JP, et al. Reduced metabolic efficiency of skeletal muscle energetics in hyperthyroid patients evidenced quantitatively by in vivo phosphorus-31 magnetic resonance spectroscopy. Metabolism. 1998;47:769–76.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Ruff RL. Endocrine myopathies. In: Engel AG, Banker BQ, editors. Myology. New York: Mc Graw Hill; 1986. p. 1881–7.Google Scholar
  136. 136.
    Zoref-Shani E, Shainberg A, Kessler-Icekson G. Production and degradation of AMP in cultured rat skeletal and heart muscle: a comparative study. Adv Exp Med Biol. 1986;195:485–91.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Fukui H, Taniguchi S, Ueta Y, et al. Activity of the purine nucleotide cycle of the exercising muscle in patients with hyperthyroidism. J Clin Endocrinol Metab. 2001;86:2205–10.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Hisatome I, Ishiko R, Mashiba H, et al. Excess purine degradation in skeletal muscle with hyperthyroidism. Muscle Nerve. 1990;13:558–9.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Vigário PS, De Oliveira CD, Cordeiro MF, et al. Effects of physical activity on body composition and fatigue perception in patients on thyrotropin-suppressive therapy for differentiated thyroid carcinoma. Thyroid. 2011;21:695–700.Google Scholar
  140. 140.
    Ceresini G, Ceda GP, Lauretani F, Maggio M, Bandinelli S, Guralnik JM, Cappola AR, Usberti E, Morganti S, Valenti G, Ferrucci L. Mild thyroid hormone excess is associated with a decreased physical function in elderly men. Aging Male. 2011;14(4):213–9.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    McAllister RM, Delp MD, Laughlin MH. Thyroid status and exercise tolerance: cardiovascular and metabolic considerations. Sports Med. 1995;20:189–98.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Bahn RS, Castro MR. Approach to the patient with nontoxic multinodular goiter. J Clin Endocrinol Metab. 2011;96:1202–12.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Zwillich CW, Pierson OJ, Hofeldt FD, et al. Ventilatory control in myxedema and hypothyroidism. N Engl J Med. 1975;292:662–5.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Ingbar DH. The respiratory system in hypothyroidism. In: Braverman LE, Utiger RD, editors. Werner and Ingbar’s the thyroid. 7th ed. Philadelphia: Lippincott; 1996. p. 805–10.Google Scholar
  145. 145.
    Wilson WR, Bedell ON. The pulmonary abnormalities in myxedema. J Clin Invest. 1960;39:42.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Wassermann K. Diagnosing cardiovascular and lung pathophysiology from exercise gas exchange. Chest. 1997;112:1091–101.CrossRefGoogle Scholar
  147. 147.
    Werneck FZ, Coelho EF, de Lima JR, Laterza MC, Barral MM, Teixeira Pde F, Vaisman M. Pulmonary oxygen uptake kinetics during exercise in subclinical hypothyroidism. Thyroid. 2014;24(6):931–8.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Mainenti MR, Vigário PS, Teixeira PF, Maia MD, Oliveira FP, Vaisman M. Effect of levothyroxine replacement on exercise performance in subclinical hypothyroidism. J Endocrinol Investig. 2009;32(5):470–3.CrossRefGoogle Scholar
  149. 149.
    Kahaly G, Hellermann J, Mohr-Kahaly S, et al. Impaired cardiopulmonary exercise capacity in hyperthyroidism. Chest. 1996;109:57–61.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Hellermann J, Kahaly GJ. Cardiopulmonary involvement in thyroid disease. Pneumologie. 1996;50:375–80.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Small D, Gibbons W, Levy RD, et al. Exertional dyspnea and ventilation in hyperthyroidism. Chest. 1992;101:1268–73.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Ayers J, Clark TH, Maisey MN. Thyrotoxicosis and dyspnea. Clin Endocrinol. 1982;164:645.Google Scholar
  153. 153.
    Massey DG, Becklake MR, McKenzie JM, et al. Circulatory and ventilatory response to exercise in thyrotoxicosis. N Engl J Med. 1967;276:1104–12.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Siafakas NM, Milona I, Salesiotou V, et al. Respiratory muscle strength in hyperthyroidism before and after treatment. Am Rev Respir Dis. 1992;146:1025–9.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Stein M, Kimbel P, Johnson RL. Pulmonary function in hyperthyroidism. J Clin Invest. 1960;40:348–63.CrossRefGoogle Scholar
  156. 156.
    Goswami R, Guleria R, Gupta AK, et al. Prevalence of diaphragmatic muscle weakness and dyspnoea in Graves’ disease and their reversibility with carbimazole therapy. Eur J Endocrinol. 2002;147:299–303.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Sestoft L, Saltin B. The low physical working capacity of thyrotoxic patients is not normalized by oral antithyroid treatment. Clin Physiol. 1988;8:9–15.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Portella RB, da Costa Silva JL, Wagman MB, et al. Exercise performance in young and middle-aged female patients with subclinical hyperthyroidism. Thyroid. 2006;16:731–5.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Mercuro G, Panzuto MG, Bina A, et al. Cardiac function, physical exercise capacity, and quality of life during long-term thyrotropin-suppressive therapy with levothyroxine: effect of individual dose tailoring. J Clin Endocrinol Metab. 2000;85:159–64.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Mastorakos G, Pavlatou M. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm Metab Res. 2005;37:577–84.CrossRefGoogle Scholar
  161. 161.
    Uribe RM, Jaimes-Hoy L, Ramírez-Martínez C, García-Vázquez A, Romero F, Cisneros M, Cote-Vélez A, Charli JL, Joseph-Bravo P. Voluntary exercise adapts the hypothalamus-pituitary-thyroid axis in male rats. Endocrinology. 2014;155(5):2020–30.CrossRefGoogle Scholar
  162. 162.
    Lesmana R, Iwasaki T, Iizuka Y, Amano I, Shimokawa N, Koibuchi N. The change in thyroid hormone signaling by altered training intensity in male rat skeletal muscle. Endocr J. 2016;63(8):727–38.CrossRefGoogle Scholar
  163. 163.
    Huang WS, Yu MD, Lee MS, et al. Effect of treadmill exercise on circulating thyroid hormone measurements. Med Princ Pract. 2004;13:15–9.CrossRefGoogle Scholar
  164. 164.
    Premachandra BN, Winder WW, Hickson R, et al. Circulating reverse triiodothyronine in humans during exercise. Eur J Appl Physiol. 1981;47:281–8.CrossRefGoogle Scholar
  165. 165.
    Mason JW, Hartley LH, Kotchen TA, et al. Plasma thyroid stimulating hormone response in anticipation of muscular exercise in the human. J Clin Endocrinol Metab. 1973;37:403–6.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Liewendahl K, Helenius T, Niiveri H, et al. Fatty acid-induced increase in serum dialyzable free thyroxine after physical exercise: implication for nonthyroidal illness. J Clin Endocrinol Metab. 1992;74:1361–5.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Galbo H, Hummer L, Petersen IB, et al. Thyroid and testicular hormone responses to graded and prolonged exercise in man. Eur J Appl Physiol. 1977;36:101–6.CrossRefGoogle Scholar
  168. 168.
    Schmid P, Wolf W, Pilger E, et al. TSH, T3, rT3 and FT4 in maximal and submaximal physical exercise. Eur J Appl Physiol. 1982;48:31–9.CrossRefGoogle Scholar
  169. 169.
    Hackney AC, Kallman A, Hosick KP, Rubin DA, Battaglini CL. Thyroid hormonal responses to intensive interval versus steady-state endurance exercise sessions. Hormones (Athens). 2012;11(1):54–60.CrossRefGoogle Scholar
  170. 170.
    Hesse V, Vilser C, Scheibe I, et al. Thyroid hormone metabolism under extreme body exercise. Exp Clin Endocrinol. 1989;94:82–8.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Semple CG, Thomson LA, Beastall GR. Endocrine responses to marathon running. Br J Sports Med. 1985;19:148–51.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Sander M, Rocker L. Influence of marathon running on thyroid hormones. Int J Sports Med. 1988;9:123–6.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Limanová Z, Sonka I, Kratochvil O, et al. Effects of exercise on serum cortisol and thyroid hormones. Exp Clin Endocrinol. 1983;81:308–14.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Rone IK, Dons RF, Reed HL. The effect of endurance training on serum triiodothyronine kinetics in man: physical conditioning marked by enhanced thyroid hormone metabolism. Clin Endocrinol. 1992;37:325–30.CrossRefGoogle Scholar
  175. 175.
    Smallridge RC, Whorton NE, Burman KD, et al. Effects of exercise and physical fitness on the pituitary-thyroid axis and on prolactin secretion in male runners. Metabolism. 1985;34:949–54.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Deligiannis A, Karamouzis M, Kouidi E, et al. Plasma TSH, T3, T4 and cortisol responses to swimming at varying water temperatures. Br J Sports Med. 1993;27:247–50.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Dulac S, Quirion A, DeCarufel D, et al. Metabolic and hormonal responses to long-distance swimming in cold water. Int J Sports Med. 1987;8:352–6.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Reichlin S, Martin JB, Jackson IMD. Regulation of thyroid stimulating hormone (TSH) secretion. In: Jeffcoate SL, Hutchinson ISM, editors. The endocrine hypothalamus. London: Academic; 1978. p. 237–43.Google Scholar
  179. 179.
    Rhodes BA, Conway MJ. Exercise lowers thyroid radioiodine uptake: concise communication. J Nucl Med. 1980;21:835–7.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Tremblay A, Poehlman ET, Despres JP, et al. Endurance training with constant energy intake in identical twins: changes over time in energy expenditure and related hormones. Metabolism. 1997;46:499–503.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Lehmann M, Knizia K, Gastmann U, et al. Influence of 6-week, 6 days per week, training on pituitary function in recreational athletes. Br J Sports Med. 1993;27:186–92.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Burman KD, Diamond RC, Harvey GS, et al. Glucose modulation of alterations in serum iodothyronine concentrations induced by fasting. Metabolism. 1979;28:291–9.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Phys. 1994;264:817–23.Google Scholar
  184. 184.
    Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.CrossRefGoogle Scholar
  185. 185.
    Maughan RJ. Nutrition in sport. Chichester: Wiley; 2008.Google Scholar
  186. 186.
    Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40. Epub 2004 Apr 19.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Mathieson RA, Walberg IT, Gwazdauskas FC, et al. The effect of varying carbohydrate content of a very-low-caloric-diet on resting metabolic rate and thyroid hormones. Metabolism. 1986;35:394–8.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    O’Connell M, Robbins DC, Horton ES, et al. Changes in serum concentrations of 3,3’,5’triiodothyronine and 3,5,3’-triiodothyronine during prolonged moderate exercise. J Clin Endocrinol Metab. 1979;49:242–6.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Opstad PK, Falch D, Okedalen O, et al. The thyroid function in young men during prolonged exercise and the effect of energy and sleep deprivation. Clin Endocrinol. 1984;20:657–9.CrossRefGoogle Scholar
  190. 190.
    Hackney AC, Hodgdon JA. Thyroid hormone changes during military field operations: effects of cold exposure in the Arctic. Aviat Space Environ Med. 1992;63(7):606–11.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Hackney AC, Feith S, Pozos R, Seale J. Effects of high altitude and cold exposure on resting thyroid hormone concentrations. Aviat Space Environ Med. 1995;66(4):325–9.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Sawhney RC, Malhotra AS. Thyroid function in sojourners and acclimatized low landers at high -altitude in man. Horm Metab Res. 1991;23:81.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Stock MJ, Chapman C, Stirling JL, Campbell IT. Effects of exercise, altitude, and food on blood -hormone and metabolic levels. J Appl Physiol. 1978;45:350–4.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Fortunato RS, Ignácio DL, Padron AS, et al. The effect of acute exercise session on thyroid hormone economy in rats. J Endocrinol. 2008;198:347–53.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Simsch C, Lormes W, Petersen KG, et al. Training intensity influences leptin and thyroid hormones in highly trained rowers. Int J Sports Med. 2002;23:422–7.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Benso A, Broglio F, Aimaretti G, et al. Endocrine and metabolic responses to extreme altitude and physical exercise in climbers. Eur J Endocrinol. 2007;157:733–40. Soc Ital Biol Sper. 1984;60:753–9.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Harber VJ, Petersen SR, Chilibeck PD. Thyroid hormone concentrations and muscle metabolism in amenorrheic and eumenorrheic athletes. Can J Appl Physiol. 1998;23:293–306.CrossRefGoogle Scholar
  198. 198.
    Creatsas G, Salakos N, Averkiou M, et al. Endocrinological profile of oligomenorrheic strenuously exercising adolescents. Int J Gynaecol Obstet. 1992;38:215–21.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dorina Ylli
    • 1
  • Joanna Klubo-Gwiezdzinska
    • 2
  • Leonard Wartofsky
    • 3
    Email author
  1. 1.MedStar Health Research Institute, Thyroid Cancer Research CenterWashington, DCUSA
  2. 2.National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Disease/Metabolic Disease BranchBethesdaUSA
  3. 3.Thyroid Cancer ResearchGeorgetown University School of Medicine, MedStar Health Research Institute, Department of EndocrinologyWashington, DCUSA

Personalised recommendations