Impact of Chronic Training on Pituitary Hormone Secretion in Humans

  • Johannes D. VeldhuisEmail author
  • Kohji Yoshida
Part of the Contemporary Endocrinology book series (COE)


The impact of chronic training on pituitary function is best understood by a basic appraisal of the neuroendocrine physiology of any given individual axis and the more complex interactive pathophysiology among axes. Interaxes interactions have received relatively little attention. Even evaluating a single neuroendocrine axis in its dynamic state is a complicated challenge, given combined feedforward and feedback activities among the key control loci within any given axis. For example, in the case of the growth hormone (GH) and insulin-like growth factor 1 (IGF-1) axis, hypothalamic GH-releasing hormone (GHRH) secreted by arcuate nuclei stimulates pituitary GH secretion acutely, whereas the somatostatinergic system originating in the paraventricular nuclei opposes GHRH action. These two neuronal inputs are reciprocally interconnected by intrahypothalamic synapses and common impinging neuromodulator pathways. In addition, secreted GH feeds back on brain GH receptors, stimulating somatostatin secretion and possibly inhibiting GHRH release. Available GH secreted into the bloodstream triggers IGF-1 production in various target tissues, and circulating IGF-1 is capable of inhibiting pituitary GH secretion indirectly and directly. Such feedforward (GHRHs driving GH secretion) and feedback (GHs inhibiting its own secretion, IGF-1 s inhibiting GH secretion, and so forth) dynamic control mechanisms in principle can be modified by the effects of exercise at one or more levels within the axis. Moreover, multiple determinants modulate neuroendocrine responses to training, such as the body composition of the individual, concurrent stress and/or weight loss, gender, diet and energy balance, concomitant drug or hormone use, age, puberty, pregnancy, and/or lactational status.


Growth hormone Growth hormone secretion Pituitary hormone secretion Stimulate growth hormone secretion Serum growth hormone concentration 



We thank Patsy Craig for her skillful preparation of the manuscript and Paula P. Azimi for the data analysis, management, and graphics. This work was supported in part by NIH Grant MO1 RR00847 (to the General Clinical Research Center of the University of Virginia Health Sciences Center), Research Career Development Award 1-KO4-HD-00634 (to J. D. V.), the Baxter Healthcare Corporation (Round Lake, IL, to J. D. V.), the NIH-supported Clinfo Data Reduction Systems, the University of Virginia Pratt Foundation and Academic Enhancement Program, the National Science Foundation Center for Biological Timing (Grant DIR89-20162), and the NIH NICHD U54 Center for Reproduction Research (HD96008).


  1. 1.
    Veldhuis JD, Yoshida K, Iranmanesh A. The effect of mental and metabolic stress on the female reproductive system and female reproductive hormones. In: Hubbard J, Workman EA, editors. Handbook of stress medicine: an organ system approach. Boca Raton: CRC; 1997. p. 115–40.Google Scholar
  2. 2.
    Veldhuis JD, Evans WS, Weltman AL, Weltman JY, Rogol AD. Impact of exercise, as a paradigm of a physical stressor, on the female hypothalamo-pituitary-gonadal axis. In: Genazzani AR, Pertraglia F, editors. Hormones in gynecological endocrinology. UK: Parthenon Publishing; 1992. p. 337–49.Google Scholar
  3. 3.
    Luger A, Deuster PA, Gold PW, Loriaux DL, Chrousos GP. Hormonal responses to the stress of exercise. Adv Exp Med Biol. 1988;245:273–80.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bullen BA, Skrinar GS, Beitins IZ, Carr DB, Reppert SM, Dotson CO, et al. Endurance training effects of plasma hormonal responsiveness and sex hormone excretion. J Appl Physiol. 1984;56:1453–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Roberts AC, McClure RD, Weiner RI, Brooks GA. Overtraining affects male reproductive status. Fertil Steril. 1993;60:686–92.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Crist DM, Hill JM. Diet and insulin-like growth factor I in relation to body composition in women with exercise-induced hypothalamic amenorrhea. J Am Coll Nutr. 1990;9:200–4.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Loucks AB. Effects of exercise training on the menstrual cycle: existence and mechanisms. Med Sci Sports Exerc. 1990;22:275–80.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wittet GA, Livesey JH, Espiner EA, Donald RA. Adaptation of the hypothalamopituitary adrenal axis to chronic exercise stress in humans. Med Sci Sports Exerc. 1996;28:1015–9.CrossRefGoogle Scholar
  9. 9.
    Viru A, Karelson K, Smirnova T. Stability and variability in hormonal responses to prolonged exercise. Int J Sports Med. 1992;13:230–5.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Dishman RK. Brain monoamines, exercise, and behavioral stress: animal models. Med Sci Sports Exerc. 1997;29:63–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Deuster PA, Chrousos GP, Luger A, DeBolt JE, Bernier LL, Trostmann UH, Kyle SB, Montgomery LC, Loriaux DL. Hormonal and metabolic responses of untrained, moderately trained, and highly trained men to three exercise intensities. Metabolism. 1989 Feb;38(2):141–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Rogol AD, Weltman JY, Evans WS, Veldhuis JD, Weltman AL. Long-term endurance training alters the hypothalamic-pituitary axes for gonadotropins and growth hormone. In: Veldhuis JD, editor. Endocrinology and metabolism clinics of North America. Philadelphia: WB Saunders; 1992. p. 817–32.Google Scholar
  13. 13.
    Veldhuis JD. Male hypothalamic-pituitary-gonadal axis. In: Yen SC, Jaffe RB, Barbieri RL, editors. Reproductive endocrinology. Philadelphia: WB Saunders; 1999. p. 622–31.Google Scholar
  14. 14.
    Straume M, Chen L, Johnson ML, Veldhuis JD. Systems-level analysis of physiological regulation interactions controlling complex secretory dynamics of growth hormone axis: a connectionist network model. Methods Neurosci. 1995;28:270–310.CrossRefGoogle Scholar
  15. 15.
    Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of GH secretion in experimental animals and the human. Endocr Rev. 1998;19:717–97.PubMedGoogle Scholar
  16. 16.
    Clapp JF. The effects of maternal exercise on early pregnancy outcome. Am J Obstet Gynecol. 1989;161:1453–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Altemus M, Deuster PA, Galliven E, Carter CS, Gold PW. Suppression of hypothalamic–pituitary–adrenal axis responses to stress in lactating women. J Clin Endocrinol Metab. 1995;80:2954–9.PubMedGoogle Scholar
  18. 18.
    Bonen A, Campagna P, Gilchrist L, Young DC, Beresford P. Substrate and endocrine responses during exercise at selected stages of pregnancy. J Appl Physiol. 1992;73:134–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Veldhuis JD, Evans WS, Demers LM, Thorner MO, Wakat D, Rogol AD. Altered neuroendocrine regulation of gonadotropin secretion in women distance runners. J Clin Endocrinol Metab. 1985;61:557–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Weltman A, Weltman JY, Schurrer R, Evans WS, Veldhuis JD, Rogol AD. Endurance training amplifies the pulsatile release of growth hormone: effects of training intensity. J Appl Physiol. 1992;76(6):2188–96.CrossRefGoogle Scholar
  21. 21.
    Rogol AD, Weltman A, Weltman JY, Seip RL, Snead DB, Levine S, et al. Durability of the reproductive axis in eumenorrheic women during one year of endurance training. J Appl Physiol. 1992;72(4):1571–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Snead DB, Weltman JY, Weltman A, Evans WS, Veldhuis JD, Varma MM, et al. Reproductive hormones and bone mineral density in women runners. J Appl Physiol. 1992;72(6):2149–56.PubMedCrossRefGoogle Scholar
  23. 23.
    Alexander SL, Irvine CH, Ellis MJ, Donald RA. The effect of acute exercise on the secretion of corticotropin-releasing factor, arginine vasopressin, and adrenocorticotropin as measured in pituitary venous blood from the horse. Endocrinology. 1991;128:65–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Thompson DL, Weltman JY, Rogol AD, Metzger D, Veldhuis JD, Weltman A. Cholinergic and opioid involvement in release of growth hormone during exercise and recovery. J Appl Physiol. 1993;75:870–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Fryburg DA, Weltman A, Jahn LA, Weltman JY, Samolijik E, Veldhuis JD. Short-term modulation of the androgen milieu alters pulsatile but not exercise or GHRH-stimulated GH secretion in healthy men. J Clin Endocrinol Metab. 1997;82:3710–9.PubMedGoogle Scholar
  26. 26.
    Wideman L, Weltman JY, Shah N, Story S, Veldhuis JD, Weltman A. The effects of gender on exercise-induced growth hormone (GH) release. J Applied Physiol. 1999;87:115–62.CrossRefGoogle Scholar
  27. 27.
    Kanaley JA, Weltman JY, Veldhuis JD, Rogol AD, Harman ML, Weltman A. Human growth hormone response to repeated bouts of aerobic exercise. J Appl Physiol. 1997;83:1756–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Weltman JY, Seip RL, Weltman AL, Snead D, Veldhuis JD, Rogol AD. Release of luteinizing hormone and growth hormone after recovery from maximal exercise. J Appl Physiol. 1990;69(1):196–200.PubMedCrossRefGoogle Scholar
  29. 29.
    Pritzlaff CJ, Wideman L, Weltman JY, Abbott RD, Gutgesell ME, Hartman ML, Veldhuis JD, Weltman A. Impact of acute exercise intensity on pulsatile growth hormone release in men. J Appl Physiol. 1999 Aug;87(2):498–504.PubMedCrossRefGoogle Scholar
  30. 30.
    Weltman A, Pritzlaff CJ, Wideman L, Considine RV, Fryburg DA, Gutgesell ME, Hartman ML, Veldhuis JD. Intensity of acute exercise does not affect serum leptin concentrations in young men. Med Sci Sports Exerc. 2000 Sep;32(9):1556–61.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lehmann M, Knizia K, Gastmann U, Petersen KG, Khalaf AN, Bauer S, et al. Influence of 6-week, 6 days per week, training on pituitary function in recreational athletes. Br J Sports Med. 1993;27:186–92.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Elias AN, Wilson AF. Exercise and gonadal function. Hum Reprod. 1993;8:1747–61.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Cumming DC, Wheeler GD, MCColl EM. The effects of exercise on reproductive function in men. Sports Med. 1989;7:1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    McColl EM, Wheeler GD, Gomes P, Bhambhani Y, Cumming DC. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol. 1989;31:617–21.CrossRefGoogle Scholar
  35. 35.
    Hackney AC. Endurance training and testosterone levels. Sports Med. 1989;8:117–27.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Caston AL, Farrell PA, Deaver DR. Exercise training-induced changes in anterior pituitary gonadotrope of the female rat. J Appl Physiol. 1995;79:194–201.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Blaney J, Sothmann M, Raff H, Hart B, Horn T. Impact of exercise training on plasma adrenocorticotropin response to a well-learned vigilance task. Psychoneuroendocrinology. 1990;15:453–62.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Watanabe T, Morimoto A, Sakata Y, Wada M, Murakami N. The effect of chronic exercise on the pituitary-adrenocortical response in conscious rats. J Physiol. 1991;439:691–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fellmann N, Bedu M, Boudet G, Mage M, Sagnol M, Pequignot JM, et al. Inter-relationships between pituitary-adrenal hormones and catecholamines during a 6-day Nordic ski race. Eur J Appl Physiol Occup Physiol. 1992;64:258–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Laatikainen TJ. Corticotropin-releasing hormone and opioid peptides in reproduction and stress. Ann Med. 1991;23:489–96.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Bonen A, Keizer HA. Pituitary, ovarian, and adrenal hormone responses to marathon running. Int J Sports Med. 1987;3:161–7.CrossRefGoogle Scholar
  42. 42.
    Pestell RG, Hurley DM, Vandongen R. Biochemical and hormonal changes during a 1000 km ultramarathon. Clin Exp Pharmacol Physiol. 1989;16:353–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Friedl KE, Plymate SR, Bernhard WN, Mohr LC. Elevation of plasma estradiol in healthy men during a mountaineering expedition. Horm Metab Res. 1988;20:239–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Iranmanesh A, Lizarralde G, Veldhuis JD. Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men. J Clin Endocrinol Metab. 1991;73:1081–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Veldhuis JD, Iranmanesh A, Ho KKY, Lizarralde G, Waters MJ, Johnson ML. Dual defects in pulsatile growth hormone secretion and clearance subserve the hyposomatotropism of obesity in man. J Clin Endocrinol Metab. 1991;72:51–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Veldhuis JD, Iranmanesh A, Evans WS, Lizarralde G, Thorner MO, Vance ML. Amplitude suppression of the pulsatile mode of immunoradiometric LH release in fasting-induced hypoandrogenemia in normal men. J Clin Endocrinol Metab. 1993;76:587–93.PubMedGoogle Scholar
  47. 47.
    Hartman ML, Veldhuis JD, Johnson ML, Lee MM, Alberti KG, Samojlik E, et al. Augmented growth hormone (GH) secretory burst frequency and amplitude mediate enhanced GH secretion during a two-day fast in normal men. J Clin Endocrinol Metab. 1992;74:757–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Weltman A, Weltman JY, Hartman ML, Abbott RA, Rogol AD, Evans WS, et al. Relationship between age, percentage body fat, fitness and 24 hour growth hormone release in healthy young adults: effects of gender. J Clin Endocrinol Metab. 1994;78:543–8.PubMedGoogle Scholar
  49. 49.
    Veldhuis JD, Urban RJ, Lizarralde G, Johnson ML, Iranmanesh A. Attenuation of luteinizing hormone secretory burst amplitude is a proximate basis for the hypoandrogenism of healthy aging in men. J Clin Endocrinol Metab. 1992;75:52–8.Google Scholar
  50. 50.
    Bergendahl M, Vance ML, Iranmanesh A, Thorner MO, Veldhuis JD. Fasting as a metabolic stress paradigm selectively amplifies cortisol secretory burst mass and delays the time of maximal nyctohemeral cortisol concentrations in healthy men. J Clin Endocrinol Metab. 1996;81:692–9.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Aloi JA, Bergendahl M, Iranmanesh A, Veldhuis JD. Pulsatile intravenous gonadotropin-releasing hormone administration averts fasting-induced hypogonadotropism and hypoandrogenemia in healthy, normal-weight men. J Clin Endocrinol Metab. 1997;82:1543–8.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Veldhuis JD, Kulin HE, Warner BA, Santner SJ. Responsiveness of gonadotropin secretion to infusion of an opiate-receptor antagonist in hypogonadotropic individuals. J Clin Endocrinol Metab. 1982;55:649–53.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Iranmanesh A, Grisso B, Veldhuis JD. Low basal and persistent pulsatile growth hormone secretion are revealed in normal and hyposomatotropic men studied with a new ultrasensitive chemiluminescence assay. J Clin Endocrinol Metab. 1994;78:526–35.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Veldhuis JD, Liem AY, South S, Weltman A, Weltman J, Clemmons DA, et al. Differential impact of age, sex-steroid hormones, and obesity on basal versus pulsatile growth hormone secretion in men as assessed in an ultrasensitive chemiluminescence assay. J Clin Endocrinol Metab. 1995;80:3209–22.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Roubenoff R, Rall LC, Veldhuis JD, Kehayias JJ, Rosen C, Nicolson M, et al. The relationship between growth hormone kinetics and sarcopenia in postmenopausal women: the role of fat mass and leptin. J Clin Endocrinol Metab. 1998;83:1502–6.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Vahl N, Jorgensen JOL, Skjaerback C, Veldhuis JD, Orskov HJ, Christiansen J. Abdominal adiposity rather than age and sex predicts the mass and patterned regularity of growth hormone secretion in mid-life healthy adults. Am J Phys. 1997;272:E1108–16.Google Scholar
  57. 57.
    Ho KY, Veldhuis JD, Johnson ML, Furlanetto R, Evans WS, Alberti KG, et al. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J Clin Invest. 1988;81:968–75.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bergendahl M, Iranmanesh A, Evans WS, Veldhuis JD. Short-term fasting selectively suppresses leptin pulse mass and 24-hour rhythmic leptin release in healthy mid-luteal phase women without disturbing leptin pulse frequency or its entropy control (pattern orderliness). J Clin Endocrinol Metab. 1999;83:883–94.Google Scholar
  59. 59.
    Walberg-Rankin J, Gwazdauskas FC. Response of beta-endorphin and estradiol to resistance exercise in female during energy balance and energy restriction. Int J Sports Med. 1992;13:542–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Garcia-Rudaz MC, Ropelato MG, Escobar ME, Veldhuis JD, Barontini M. Augmented frequency and mass of LH discharged per burst are accompanied by marked disorderliness of LH secretion in adolescents with polycystic ovary syndrome. Eur J Endocrinol. 1998;139:621–30.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Veldhuis JD, Johnson ML, Bolton WK. Analyzing pulsatile endocrine data in patients with chronic renal failure: a brief review of deconvolution techniques. Pediatr Nephrol. 1991;5:522–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Van den Berg G, Veldhuis JD, Frolich M, Roelfsema F. An amplitude-specific divergence in the pulsatile mode of GH secretion underlies the gender difference in mean GH concentrations in men and premenopausal women. J Clin Endocrinol Metab. 1996;81:2460–6.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Veldhuis JD, Metzger DL, Martha PM Jr, Mauras N, Kerrigan JR, Keenan B, et al. Estrogen and testosterone, but not a non-aromatizable androgen, direct network integration of the hypothalamo-somatotrope (growth hormone)-insulin-like growth factor I axis in the human: evidence from pubertal pathophysiology and sex-steroid hormone replacement. J Clin Endocrinol Metab. 1997;82:3414–20.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Roelfsema F, Van den Berg G, Frolich M, Veldhuis JD, van Eijk A, Buurman MM, et al. Sex-dependent alteration in cortisol response to endogenous adrenocorticotropin. J Clin Endocrinol Metab. 1993;77:234–40.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Van den Berg G, Pincus SM, Veldhuis JD, Frolich M, Roelfsema F. Greater disorderliness of ACTH and cortisol release accompanies pituitary-dependent Cushing’s disease. Eur J Endocrinol. 1997;136:394–400.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Mulligan T, Iranmanesh A, Johnson ML, Straume M, Veldhuis JD. Aging alters feedforward and feedback linkages between LH and testosterone in healthy men. Am J Phys. 1997;42:R1407–13.Google Scholar
  67. 67.
    Pincus SM, Mulligan T, Iranmanesh A, Gheorghiu S, Godschalk M, Veldhuis JD. Older males secrete luteinizing hormone and testosterone more irregularly, and jointly more asynchronously, than younger males: dual novel facets. Proc Natl Acad Sci U S A. 1996;93:14100–5.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Keenan DM, Veldhuis JD, Sun W. A stochastic biomathematical model of the male reproductive hormone system. SIAM J Appl Math. 2000;61(3):934–65.CrossRefGoogle Scholar
  69. 69.
    Rogol AD, Martha PM Jr, Johnson ML, Veldhuis JD, Blizzard RM. Growth hormone secretory dynamics during puberty. In: Adashi EY, Thorner MO, editors. The somatotrophic axis and the reproductive process in health and disease. New York: Springer; 1996. p. 69–82.Google Scholar
  70. 70.
    Veldhuis JD. Male hypothalamic–pituitary–gonadal axis. In: Lipshultz LI, Howards SS, editors. Infertility in the male. Philadelphia: Mosby-Year Book; 1996. p. 23–58.Google Scholar
  71. 71.
    Veldhuis JD, Iranmanesh A, Rogol AD, Urban RJ. Regulatory actions of testosterone on pulsatile growth hormone secretion in the human: studies using deconvolution analysis. In: Adashi EY, Thorner MO, editors. Somatotropic axis and the reproductive process in health and disease. New York: Springer; 1995. p. 40–57.CrossRefGoogle Scholar
  72. 72.
    Veldhuis JD. Gender differences in secretory activity of the human somatotropic (GH) axis. Eur J Endocrinol. 1997;134:287–95.CrossRefGoogle Scholar
  73. 73.
    Veldhuis JD. Neuroendocrine mechanisms mediating awakening of the gonadotropic axis in puberty. Pediatr Nephrol. 1996;10:304–17.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Mauras N, Rogol AD, Haymond MW, Veldhuis JD. Sex steroids, growth hormone, IGF-I: neuroendocrine and metabolic regulation in puberty. Horm Res. 1996;45:74–80.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Theintz GE, Howald H, Weiss U, Sizonenko PC. Evidence for a reduction of growth potential in adolescent female gymnasts. J Pediatr. 1993;122:306–13.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Dawson-Hughes B, Stern D, Goldman J, Reichlin S. Regulation of growth hormone and somatomedin-C secretion in postmenopausal women: effect of physiological estrogen replacement therapy. J Clin Endocrinol Metab. 1986;63:424–32.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Weltman A, Seip RL, Snead D, Weltman JY, Evans WS, Veldhuis JD, et al. Exercise training at and above the lactate threshold in previously untrained women. Int J Sports Med. 1992;13(3):257–63.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Pincus SM, Gevers E, Robinson ICA, Roelfsema F, Hartman ML, Veldhuis JD. Females secrete growth hormone with more process irregularity than males in both human and rat. Am J Phys. 1996;270:E107–15.CrossRefGoogle Scholar
  79. 79.
    Veldhuis JD. Pulsatile hormone release as a window into the brain’s control of the anterior pituitary gland in health and disease: implications and consequences of pulsatile luteinizing hormone secretion. Endocrinologist. 1995;5:454–69.CrossRefGoogle Scholar
  80. 80.
    Veldhuis JD. Issues in quantifying pulsatile neurohormone release. In: Van de Kar LD, editor. Methods in neuroendocrinology: the cellular and molecular neuropharmacology series. Boca Raton: CRC; 1998. p. 181–203.Google Scholar
  81. 81.
    Veldhuis JD. New modalities for understanding dynamic regulation of the somatotropic (GH) axis: explication of gender differences in GH neuroregulation in the human. J Pediatr Endocrinol. 1996;9:237–53.Google Scholar
  82. 82.
    Veldhuis JD, Iranmanesh A, Johnson ML, Lizarralde G. Twenty-four hour rhythms in plasma concentrations of adenohypophyseal hormones are generated by distinct amplitude and/or frequency modulation of underlying pituitary secretory bursts. J Clin Endocrinol Metab. 1990;71:1616–23.PubMedCrossRefGoogle Scholar
  83. 83.
    Veldhuis JD. A parsimonious model of amplitude and frequency modulation of episodic hormone secretory bursts as a mechanism for ultradian signaling by endocrine glands. In: Wever R, Kleitman N, editors. Ultradian rhythms in life processes: an inquiry into fundamental principles. London: Springer; 1992. p. 139–72.CrossRefGoogle Scholar
  84. 84.
    Veldhuis JD, Iranmanesh A, Johnson ML, Lizarralde G. Amplitude, but not frequency, modulation of ACTH secretory bursts gives rise to the nyctohemeral rhythm of the corticotropic axis in man. J Clin Endocrinol Metab. 1990;71:452–63.PubMedCrossRefGoogle Scholar
  85. 85.
    Hartman ML, Pincus SM, Johnson ML, Matthews DH, Faunt LM, Vance ML, et al. Enhanced basal and disorderly growth hormone (GH) secretion distinguish acromegalic from normal pulsatile GH release. J Clin Invest. 1994;94:1277–88.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pincus SM, Veldhuis JD, Mulligan T, Iranmanesh A, Evans WS. Effects of age on the irregularity of LH and FSH serum concentrations in women and men. Am J Phys. 1997;273:E989–95.Google Scholar
  87. 87.
    Siragy HM, Vieweg WVR, Pincus SM, Veldhuis JD. Increased disorderliness and amplified basal and pulsatile aldosterone secretion in patients with primary aldosteronism. J Clin Endocrinol Metab. 1995;80:28–33.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Van den Berg G, Pincus SM, Frolich M, Veldhuis JD, Roelfsema F. Reduced disorderliness of growth hormone release in biochemically inactive acromegaly after pituitary surgery. Eur J Endocrinol. 1998;138:164–9.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Schmitz O, Porksen N, Nyholm B, Skjaerback C, Butler PC, Veldhuis JD, et al. Disorderly and nonstationary insulin secretion in glucose-tolerant relatives of patients with NIDDM. Am J Phys. 1997;35:E218–26.Google Scholar
  90. 90.
    Meneilly GS, Ryan AS, Veldhuis JD, Elahi D. Increased disorderliness of basal insulin release, attenuated insulin secretory burst mass, and reduced ultradian rhythmicity of insulin secretion in older individuals. J Clin Endocrinol Metab. 1997;82:4088–93.PubMedGoogle Scholar
  91. 91.
    Johnson ML, Veldhuis JD. Evolution of deconvolution analysis as a hormone pulse detection method. Methods Neurosci. 1995;28:1–24.CrossRefGoogle Scholar
  92. 92.
    Veldhuis JD, Johnson ML. Specific methodological approaches to selected contemporary issues in deconvolution analysis of pulsatile neuroendocrine data. Methods Neurosci. 1995;28:25–92.CrossRefGoogle Scholar
  93. 93.
    Veldhuis JD, Evans WS, Johnson ML. Complicating effects of highly correlated model variables on nonlinear least-squares estimates of unique parameter values and their statistical confidence intervals: estimating basal secretion and neurohormone half-life by deconvolution analysis. Methods Neurosci. 1995;28:130–8.CrossRefGoogle Scholar
  94. 94.
    Loucks AB, Laughlin GA, Mortola JF, Girton L, Nelson JC, Yen SS. Hypothalamic–pituitary–thyroidal function in eumenorrheic and amenorrheic athletes. J Clin Endocrinol Metab. 1992;75:514–8.PubMedGoogle Scholar
  95. 95.
    Rogol AD, Veldhuis JD, Williams FT, Johnson ML. Pulsatile secretion of gonadotropins and pro-lactin in male marathon runners: relation to the endogenous opiate system. J Androl. 1983;5:21–7.CrossRefGoogle Scholar
  96. 96.
    Bagatell CJ, Bremner WJ. Sperm counts and reproductive hormones in male marathoners and lean controls. Fertil Steril. 1990;53:688–92.PubMedCrossRefGoogle Scholar
  97. 97.
    Arce JC, De Souza MJ. Exercise and male factor infertility. Sports Med. 1993;15:146–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Lucia A, Chicharro JL, Perez M, Serratosa L, Bandres EF, Legido JC. Reproductive function in male endurance athletes: sperm analysis and hormonal profiles. J Appl Physiol. 1996;81:2627–36.PubMedCrossRefGoogle Scholar
  99. 99.
    Celani MF, Grandi M. The pituitary-testicular axis in non-professional soccer players. Exp Clin Endocrinol. 1989;94:244–52.PubMedCrossRefGoogle Scholar
  100. 100.
    Vasankari TJ, Kujala UM, Taimela S, Huhtaniemi IT. Pituitary-gonadal response to gonadotropin-releasing hormone stimulation is enhanced in men after strenuous physical exercise. Acta Endocrinol. 1993;129:9–14.PubMedCrossRefGoogle Scholar
  101. 101.
    Keenan DM, Veldhuis JD. A biomathematical model of time-delayed feedback in the human male hypothalamic–pituitary–Leydig cell axis. Am J Phys. 1998;275:E157–76.Google Scholar
  102. 102.
    Veldhuis JD, Johnson ML. Analytical methods for evaluating episodic secretory activity within neuroendocrine axes. Neurosci Biobehav Rev. 1994;18:605–12.PubMedCrossRefGoogle Scholar
  103. 103.
    Keenan D, Veldhuis JD. A stochastic model of admixed basal and pulsatile hormone secretion as modulated by a deterministic oscillator. Am J Phys. 1997;273:R1182–92.Google Scholar
  104. 104.
    Bergendahl M, Veldhuis JD. Altered pulsatile gonadotropin signaling in nutritional deficiency in the male. Trends Endocrinol Metab. 1995;6:145–59.PubMedCrossRefGoogle Scholar
  105. 105.
    Frager MS, Pieper DR, Tonetta SA, Duncan JA, Marshall JC. Pituitary gonadotropin-releasing hormone receptors: effects of castration, steroid replacement, and the role of gonadotropin-releasing hormone in modulating receptors in the rat. J Clin Invest. 1991;67(3):615–23.CrossRefGoogle Scholar
  106. 106.
    Bergendahl M, Evans WS, Veldhuis JD. Current concepts on ultradian rhythms of luteinizing hormone secretion in the human. Hum Reprod Update. 1996;2:507–18.PubMedCrossRefGoogle Scholar
  107. 107.
    Licinio J, Negrao AB, Mantzoros C, Kaklamani V, Wong M-L, Bongiorno PB, et al. Synchronicity of frequently-sampled 24-hour concentrations of circulating leptin, luteinizing hormone, and estradiol in healthy women. Proc Natl Acad Sci U S A. 1998;95:2541–6.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of targets on leptin action in rat hypothalamus. J Clin Invest. 1996;98:1101–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ahima RS, Dushay J, Flier SN, Prabakaran D, Flier JS. Leptin accelerates the onset of puberty in normal female mice. J Clin Invest. 1997;99:391–5.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Vasankari TJ, Kujala UM, Viljanen TT, Huhtaniemi IT. Carbohydrate ingestion during prolonged running exercise results in an increase of serum cortisol and decrease of gonadotrophins. Acta Physiol Scand. 1991;141:373–7.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Tabata I, Ogita F, Miyachi M, Shibayama H. Effect of low blood glucose on plasma CRF, ACTH, and cortisol during prolonged physical exercise. J Appl Physiol. 1991;71:1807–12.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Matkovic V, Ilich JZ, Skugor M, Badenhop NE, Goel P, Clairmont A, et al. Leptin is inversely related to age at menarche in human females. J Clin Endocrinol Metab. 1997;82:3239–45.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Wade GN, Schneider JE, Li HY. Control of fertility by metabolic cues. Am J Phys. 1996;270:E1–19.Google Scholar
  114. 114.
    Mastrogiacomo I, Toderini D, Bonanni G, Bordin D. Gonadotropin decrease induced by prolonged exercise at about 55% of the VO2max in different phases of the menstrual cycle. Int J Sports Med. 1990;11:198–203.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Botticelli G, Bacchi Modena A, Bresciani D, Villa P, Aguzzoli L, Florio P, et al. Effect of naltrexone treatment on the treadmill exercise-induced hormone release in amenorrheic women. J Endocrinol Investig. 1992;15:839–47.CrossRefGoogle Scholar
  116. 116.
    Kanaley JA, Boileau RA, Bahr JM, Misner JE, Nelson RA. Cortisol levels during prolonged exercise: the influence of menstrual phase and menstrual status. Int J Sports Med. 1992;13:332–6.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Hohtari H, Elovainio R, Salminen K, Laatikainen T. Plasma corticotropin-releasing hormone, corticotropin, and endorphins at rest and during exercise in eumenorrheic and amenorrheic athletes. Fertil Steril. 1988;50:233–8.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Samuels MH, Sanborn CF, Hofeldt F, Robbins R. The role of endogenous opiates in athletic amenorrhea. Fertil Steril. 1991;565:507–12.CrossRefGoogle Scholar
  119. 119.
    Harber VJ, Sutton JR, MacDougall JD, Woolever CA, Bhavnani BR. Plasma concentrations of beta-endorphin in trained eumenorrheic and amenorrheic women. Fertil Steril. 1997;67:648–53.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Hohtari H, Salminen-Lappalainen K, Laatikainen T. Response of plasma endorphins, corticotropin, cortisol, and luteinizing hormone in the corticotropin-releasing hormone stimulation test in eumenorrheic and amenorrheic athletes. Fertil Steril. 1991;55:276–80.PubMedCrossRefGoogle Scholar
  121. 121.
    Armeanu MC, Lambalk CB, Berkhout GM, Schoemaker J. Effects of opioid antagonism with naltrexone on pulsatile luteinizing hormone secretion in women with hypothalamic amenorrhea in basal conditions and after discontinuation of treatment with pulsatile LHRH. Gynecol Endocrinol. 1992;6:3–12.PubMedCrossRefGoogle Scholar
  122. 122.
    Loucks AB, Mortola JF, Girton L, Yen SS. Alterations in the hypothalamic–pituitary–ovarian and the hypothalamic–pituitary–adrenal axes in athletic women. J Clin Endocrinol Metab. 1989;68:402–11.PubMedCrossRefGoogle Scholar
  123. 123.
    De Cree C, Van Kranenburg G, Geurten P, Fujimori Y, Keizer HA. 4-Hydroxycatecholestrogen metabolism responses to exercise and training: possible implications for menstrual cycle irregularities and breast cancer. Fertil Steril. 1997;67:505–16.PubMedCrossRefGoogle Scholar
  124. 124.
    Dugowson CE, Drinkwater BL, Clark JM. Nontraumatic femur fracture in an oligomenorrheic athlete. Med Sci Sports Exerc. 1991;23:1323–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Baker E, Demers L. Menstrual status in female athletes: correlations with reproductive hormones and bone density. Obstet Gynecol. 1988;72:683–7.PubMedGoogle Scholar
  126. 126.
    Marcus R, Cann C, Madvig P, Minkoff J, Goddard M, Bayer M, et al. Menstrual function and bone mass in elite women distance runners: endocrine and metabolic features. Ann Intern Med. 1985;102:158–63.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Wright NM, Renault J, Willi S, Veldhuis JD, Gordon L, Key LL, et al. Greater secretion of growth hormone in black than in white males: possible factor in greater bone mineral density. J Clin Endocrinol Metab. 1995;80:2291–7.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Endocrine Research UnitMayo ClinicRochesterUSA
  2. 2.Department of Obstetrics and GynecologyUniversity of Occupational and Environmental HealthKitakyushuJapan

Personalised recommendations