Advertisement

Exercise and Training Effects on Appetite-Regulating Hormones in Individuals with Obesity

  • Hassane ZouhalEmail author
  • Ayoub Saeidi
  • Sarkawt Kolahdouzi
  • Sajad Ahmadizad
  • Anthony C. Hackney
  • Abderraouf Ben Abderrahmane
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

The prevalence of obesity in the world is increasing rapidly, and the associated morbidity and mortality require crucial need for non-pharmacological and therapeutic intervention to reduce alteration of appetite, food intake, and gut hormones. The effectiveness of this non-pharmacological intervention for weight management is due to probable alteration in gut hormones which regulating appetite and food intake. There are several types of hormones that control an individual’s appetite. In this study, researchers focused on major hormones of appetite regulation, ghrelin, glucagon-like peptide-1 (GLP-1), peptide YY (PYY), cholecystokinin (CCK), leptin, and oxyntomodulin (OXN).

Obese individuals were believed to have lower energy expenditure (EE) rates compared to normal and overweight ones. As such it is important to increase EE through exercise. The decrease in energy expenditure is partly due to a reduction in lean mass, the component of the body responsible for most of the energy expenditure of rest, which is found during diet. In addition, adaptive responses to weight loss are associated with many hormonal changes, including a decrease in leptin, insulin, intestinal peptide PYY, and sympathetic nervous system activity, with an increase in tissue sensitivity to insulin and circulating levels of ghrelin. Studies have shown that aerobic or resistance training resulted in slightly higher or no changes in circulating levels of these hormones, while other studies in normal-weight or overweight individuals found an interesting result about more intense physical exercise. They suggested that this type of exercise could affect ghrelin by decreasing the secretion of this peptide and stimulating that of another gastrointestinal peptide antagonist, the PYY. Intense physical exercise decreases energy intake in normal-weight and overweight individual. Further studies are required to confirm those results in obese individual.

Keywords

Acylated ghrelin Ghrelin Glucagon-like peptide 1 Appetite Leptin Oxyntomodulin 

References

  1. 1.
    Lafontan M. Adipose tissue and adipocyte dysregulation. Diabetes Metab. 2014;40(1):16–28.PubMedCrossRefGoogle Scholar
  2. 2.
    Han T, Schouten J, Lean M, Seidell J. The prevalence of low back pain and associations with body fatness, fat distribution and height. Int J Obes (Lond). 1997;21(7):600.CrossRefGoogle Scholar
  3. 3.
    Alberti K, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120(16):1640–5.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Steinberger J, Daniels SR, Eckel RH, Hayman L, Lustig RH, McCrindle B, et al. Progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2009;119(4):628–47.PubMedCrossRefGoogle Scholar
  5. 5.
    Austin J, Marks D. Hormonal regulators of appetite. International journal of pediatric endocrinology. 2008;2009(1):141753.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Caudwell P, Gibbons C, Finlayson G, Näslund E, Blundell J. Physical activity, energy intake, and obesity: the links between exercise and appetite. Curr Obes Rep. 2013;2(2):185–90.CrossRefGoogle Scholar
  7. 7.
    Martins C, Morgan L, Truby H. A review of the effects of exercise on appetite regulation: an obesity perspective. Int J Obes (Lond). 2008;32(9):1337.CrossRefGoogle Scholar
  8. 8.
    Riou M-È, Jomphe-Tremblay S, Lamothe G, Stacey D, Szczotka A, Doucet É. Predictors of energy compensation during exercise interventions: a systematic review. Nutrients. 2015;7(5):3677–704.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports Med. 2008;38(5):401–23.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zouhal H, Lemoine-Morel S, Mathieu M-E, Casazza GA, Jabbour G. Catecholamines and obesity: effects of exercise and training. Sports Med. 2013;43(7):591–600.PubMedCrossRefGoogle Scholar
  11. 11.
    Jéquier E. Pathways to obesity. Int J Obes (Lond). 2002;26(S2):S12.CrossRefGoogle Scholar
  12. 12.
    Stubbs RJ, Harbron CG, Murgatroyd PR, Prentice AM. Covert manipulation of dietary fat and energy density: effect on substrate flux and food intake in men eating ad libitum. Am J Clin Nutr. 1995;62(2):316–29.PubMedCrossRefGoogle Scholar
  13. 13.
    Bell EA, Castellanos VH, Pelkman CL, Thorwart ML, Rolls BJ. Energy density of foods affects energy intake in normal-weight women. Am J Clin Nutr. 1998;67(3):412–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Kolahdouzi S, Baghadam M, Kani-Golzar FA, Saeidi A, Jabbour G, Ayadi A, et al. Progressive circuit resistance training improves inflammatory biomarkers and insulin resistance in obese men. Physiol Behav. 2018;205:15–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Adam TC, Westerterp-Plantenga MS. Glucagon-like peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br J Nutr. 2005;93(6):845–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Carroll JF, Kaiser KA, Franks SF, Deere C, Caffrey JL. Influence of BMI and gender on postprandial hormone responses. Obesity. 2007;15(12):2974–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Verdich C, Toubro S, Buemann B, Madsen JL, Holst JJ, Astrup A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—effect of obesity and weight reduction. Int J Obes (Lond). 2001;25(8):1206.CrossRefGoogle Scholar
  18. 18.
    Holliday A, Blannin AK. Very low volume sprint interval exercise suppresses subjective appetite, lowers acylated ghrelin, and elevates GLP-1 in overweight individuals: a pilot study. Nutrients. 2017;9(4):362.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Unick JL, Otto AD, Goodpaster BH, Helsel DL, Pellegrini CA, Jakicic JM. Acute effect of walking on energy intake in overweight/obese women. Appetite. 2010;55(3):413–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Schubert MM, Sabapathy S, Leveritt M, Desbrow B. Acute exercise and hormones related to appetite regulation: a meta-analysis. Sports Med. 2014;44(3):387–403.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Martins C, Kulseng B, King N, Holst JJ, Blundell J. The effects of exercise-induced weight loss on appetite-related peptides and motivation to eat. J Clin Endocrinol Metabol. 2010;95(4):1609–16.CrossRefGoogle Scholar
  22. 22.
    Ueda S-Y, Miyamoto T, Nakahara H, Shishido T, Usui T, Katsura Y, et al. Effects of exercise training on gut hormone levels after a single bout of exercise in middle-aged Japanese women. Springerplus. 2013;2(1):83.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Howe SM, Hand TM, Larson-Meyer DE, Austin KJ, Alexander BM, Manore MM. No effect of exercise intensity on appetite in highly-trained endurance women. Nutrients. 2016;8(4):223.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hallworth JR, Copeland JL, Doan J, Hazell TJ. The effect of exercise intensity on total PYY and GLP-1 in healthy females: a pilot study. J Nutr Metab. 2017;2017:4823102.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Beaulieu K, Olver TD, Abbott KC, Lemon PW. Energy intake over 2 days is unaffected by acute sprint interval exercise despite increased appetite and energy expenditure. Appl Physiol Nutr Metab. 2014;40(1):79–86.CrossRefGoogle Scholar
  26. 26.
    Bailey DP, Smith LR, Chrismas BC, Taylor L, Stensel DJ, Deighton K, et al. Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in normoxic and hypoxic conditions. Appetite. 2015;89:237–45.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hunschede S, Kubant R, Akilen R, Thomas S, Anderson GH. Decreased appetite after high-intensity exercise correlates with increased plasma interleukin-6 in normal-weight and overweight/obese boys. Curr Dev Nutr. 2017;1(3):e000398.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Larson-Meyer DE, Palm S, Bansal A, Austin KJ, Hart AM, Alexander BM. Influence of running and walking on hormonal regulators of appetite in women. Journal of obesity. 2012;2012:730409.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yang Q, Huang G, Tian Q, Liu W, Sun X, Li N, et al. “Living High-Training Low” improved weight loss and glucagon-like peptide-1 level in a 4-week weight loss program in adolescents with obesity: a pilot study. Medicine. 2018;97(8):e9943.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hazell TJ, Islam H, Hallworth JR, Copeland JL. Total PYY and GLP-1 responses to submaximal continuous and supramaximal sprint interval cycling in men. Appetite. 2017;108:238–44.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ueda S-Y, Yoshikawa T, Katsura Y, Usui T, Fujimoto S. Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise. J Endocrinol. 2009;203(3):357–64.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ueda S-Y, Yoshikawa T, Katsura Y, Usui T, Nakao H, Fujimoto S. Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males. J Endocrinol. 2009;201(1):151–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Martins C, Stensvold D, Finlayson G, Holst J, Wisloff U, Kulseng B, et al. Effect of moderate-and high-intensity acute exercise on appetite in obese individuals. Med Sci Sports Exerc. 2015;47(1):40–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Martins C, Morgan LM, Bloom SR, Robertson MD. Effects of exercise on gut peptides, energy intake and appetite. J Endocrinol. 2007;193(2):251–8.PubMedCrossRefGoogle Scholar
  35. 35.
    O’connor A, Johnston C, Buchanan K, Boreham C, Trinick T, Riddoch C. Circulating gastrointestinal hormone changes in marathon running. Int J Sports Med. 1995;16(05):283–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Pironi L, Stanghellini V, Miglioli M, Corinaldesi R, De Giorgio R, Ruggeri E, et al. Fat-induced Heal brake in humans: a dose-dependent phenomenon correlated to the plasma levels of peptide YY. Gastroenterology. 1993;105(3):733–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Le Roux C, Batterham R, Aylwin S, Patterson M, Borg C, Wynne K, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006;147(1):3–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Yang N, Liu X, Ding EL, Xu M, Wu S, Liu L, et al. Impaired ghrelin response after high-fat meals is associated with decreased satiety in obese and lean Chinese young adults. J Nutr. 2009;139(7):1286–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Essah PA, Levy JR, Sistrun SN, Kelly SM, Nestler JE. Effect of macronutrient composition on postprandial peptide YY levels. J Clin Endocrinol Metabol. 2007;92(10):4052–5.CrossRefGoogle Scholar
  40. 40.
    Brownley KA, Heymen S, Hinderliter AL, MacIntosh B. Effect of glycemic load on peptide-YY levels in a biracial sample of obese and normal weight women. Obesity. 2010;18(7):1297–303.PubMedCrossRefGoogle Scholar
  41. 41.
    Cahill F, Shea JL, Randell E, Vasdev S, Sun G. Serum peptide YY in response to short-term overfeeding in young men. Am J Clin Nutr. 2011;93(4):741–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Zwirska-Korczala K, Konturek S, Sodowski M, Wylezol M, Kuka D, Sowa P, et al. Basal and postprandial plasma levels of Pyy, Ghrelin. J Physiol Pharmacol. 2007;58(1):13–35.PubMedGoogle Scholar
  43. 43.
    Douglas JA, King JA, McFarlane E, Baker L, Bradley C, Crouch N, et al. Appetite, appetite hormone and energy intake responses to two consecutive days of aerobic exercise in healthy young men. Appetite. 2015;92:57–65.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kawano H, Mineta M, Asaka M, Miyashita M, Numao S, Gando Y, et al. Effects of different modes of exercise on appetite and appetite-regulating hormones. Appetite. 2013;66:26–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Deighton K, Karra E, Batterham RL, Stensel DJ. Appetite, energy intake, and PYY3–36 responses to energy-matched continuous exercise and submaximal high-intensity exercise. Appl Physiol Nutr Metab. 2013;38(9):947–52.PubMedCrossRefGoogle Scholar
  46. 46.
    Deighton K, Barry R, Connon CE, Stensel DJ. Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise. Eur J Appl Physiol. 2013;113(5):1147–56.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Broom DR, Batterham RL, King JA, Stensel DJ. Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males. Am J Physiol Regul Integr Comp Physiol. 2009;296(1):R29–35.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Shorten AL, Wallman KE, Guelfi KJ. Acute effect of environmental temperature during exercise on subsequent energy intake in active men. Am J Clin Nutr. 2009;90(5):1215–21.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    King JA, Garnham JO, Jackson AP, Kelly BM, Xenophontos S, Nimmo MA. Appetite-regulatory hormone responses on the day following a prolonged bout of moderate-intensity exercise. Physiol Behav. 2015;141:23–31.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kojima C, Ishibashi A, Ebi K, Goto K. The effect of a 20 km run on appetite regulation in long distance runners. Nutrients. 2016;8(11):672.CrossRefGoogle Scholar
  51. 51.
    Sim AY, Wallman K, Fairchild T, Guelfi K. High-intensity intermittent exercise attenuates ad-libitum energy intake. Int J Obes (Lond). 2014;38(3):417.CrossRefGoogle Scholar
  52. 52.
    King JA. Effects of exercise on appetite, food intake and the gastrointestinal hormones Ghrelin and Peptide YY: © JA King; 2010.Google Scholar
  53. 53.
    King JA, Wasse LK, Ewens J, Crystallis K, Emmanuel J, Batterham RL, et al. Differential acylated ghrelin, peptide YY3–36, appetite, and food intake responses to equivalent energy deficits created by exercise and food restriction. J Clin Endocrinol Metabol. 2011;96(4):1114–21.CrossRefGoogle Scholar
  54. 54.
    Douglas JA, King JA, Clayton DJ, Jackson A, Sargeant JA, Thackray AE, et al. Acute effects of exercise on appetite, ad libitum energy intake and appetite-regulatory hormones in lean and overweight/obese men and women. Int J Obes (Lond). 2017;41(12):1737.CrossRefGoogle Scholar
  55. 55.
    Russell RD, Willis KS, Ravussin E, Larson-Meyer ED. Effects of endurance running and dietary fat on circulating ghrelin and peptide YY. J Sports Sci Med. 2009;8(4):574.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Gibbons C, Blundell JE, Caudwell P, Webb D-L, Hellström PM, Näslund E, et al. The role of episodic postprandial peptides in exercise-induced compensatory eating. J Clin Endocrinol Metabol. 2017;102(11):4051–9.CrossRefGoogle Scholar
  57. 57.
    Martins C, Aschehoug I, Ludviksen M, Holst J, Finlayson G, Wisloff U, et al. High-intensity interval training, appetite, and reward value of food in the obese. Med Sci Sports Exerc. 2017;49(9):1851–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Guelfi KJ, Donges CE, Duffield R. Beneficial effects of 12 weeks of aerobic compared with resistance exercise training on perceived appetite in previously sedentary overweight and obese men. Metabolism. 2013;62(2):235–43.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gueugnon C, Mougin F, Nguyen NU, Bouhaddi M, Nicolet-Guénat M, Dumoulin G. Ghrelin and PYY levels in adolescents with severe obesity: effects of weight loss induced by long-term exercise training and modified food habits. Eur J Appl Physiol. 2012;112(5):1797–805.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jones TE, Basilio J, Brophy P, McCammon M, Hickner R. Long-term exercise training in overweight adolescents improves plasma peptide YY and resistin. Obesity. 2009;17(6):1189–95.PubMedGoogle Scholar
  61. 61.
    Kelly KR, Brooks LM, Solomon TP, Kashyap SR, O’Leary VB, Kirwan JP. The glucose-dependent insulinotropic polypeptide and glucose-stimulated insulin response to exercise training and diet in obesity. Am J Physiol Endocrinol Metab. 2009;296(6):E1269–E74.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Roth CL, Enriori PJ, Harz K, Woelfle J, Cowley MA, Reinehr T. Peptide YY is a regulator of energy homeostasis in obese children before and after weight loss. J Clin Endocrinol Metabol. 2005;90(12):6386–91.CrossRefGoogle Scholar
  63. 63.
    Lean M, Malkova D. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence? Int J Obes (Lond). 2016;40(4):622.CrossRefGoogle Scholar
  64. 64.
    Adamska E, Ostrowska L, Górska M, Krętowski A. The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes. Przeglad gastroenterologiczny. 2014;9(2):69.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Reinehr T, Enriori P, Harz K, Cowley M, Roth C. Pancreatic polypeptide in obese children before and after weight loss. Int J Obes (Lond). 2006;30(10):1476.CrossRefGoogle Scholar
  66. 66.
    Greenberg G, Marliss E, Zinman B. Effect of exercise on the pancreatic polypeptide response to food in man. Horm Metab Res. 1986;18(03):194–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Sliwowski Z, Lorens K, Konturek S, Bielanski W, Zoladz J. Leptin, gastrointestinal and stress hormones in response to exercise in fasted or fed subjects and before or after blood donation. J Physiol Pharmacol. 2001;52(1):53–70.PubMedGoogle Scholar
  68. 68.
    Feurle G, Wirth A, Diehm C, Lorenzen M, Schlierf G. Exercise-induced release of pancreatic polypeptide and its inhibition by propranolol: evidence for adrenergic stimulation. Eur J Clin Invest. 1980;10(3):249–51.PubMedCrossRefGoogle Scholar
  69. 69.
    Mackelvie KJ, Meneilly GS, Elahi D, Wong AC, Barr SI, Chanoine J-P. Regulation of appetite in lean and obese adolescents after exercise: role of acylated and desacyl ghrelin. J Clin Endocrinol Metabol. 2006;92(2):648–54.CrossRefGoogle Scholar
  70. 70.
    Hilsted J, Galbo H, Sonne B, Schwartz T, Fahrenkrug J, de Muckadell O, et al. Gastroenteropancreatic hormonal changes during exercise. Am J Physiol. 1980;239(3):G136–G40.PubMedGoogle Scholar
  71. 71.
    Øktedalen O, Opstad P, Jorde R, Waldum H. The effect of prolonged strain on serum levels of human pancreatic polypeptide and group I pepsinogens. Scand J Gastroenterol. 1983;18(5):663–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Hurley R, Bossetti B, O’Dorisio T, Tenison E, Welch M, Rice R. The effect of exercise training on body weight and peptide hormone patterns in normal weight college-age men. J Sports Med Phys Fitness. 1991;31(1):52–6.PubMedGoogle Scholar
  73. 73.
    Howarth FC, Marzouqi F, Al Saeedi A, Hameed RS, Adeghate E. The effect of a heavy exercise program on the distribution of pancreatic hormones in the streptozotocin-induced diabetic rat. JOP J Pancreas (Online). 2009;10(5):485–91.Google Scholar
  74. 74.
    Kanaley JA, Heden TD, Liu Y, Whaley-Connell AT, Chockalingam A, Dellsperger KC, et al. Short-term aerobic exercise training increases postprandial pancreatic polypeptide but not peptide YY concentrations in obese individuals. Int J Obes (Lond). 2014;38(2):266.CrossRefGoogle Scholar
  75. 75.
    Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol. 2009;297(6):E1247–E59.Google Scholar
  76. 76.
    Akieda-Asai S, Poleni P-E, Date Y. Coinjection of CCK and leptin reduces food intake via increased CART/TRH and reduced AMPK phosphorylation in the hypothalamus. Am J Physiol. 2014;306(11):E1284–E91.Google Scholar
  77. 77.
    Carlson JJ, Turpin AA, Wiebke G, Hunt SC, Adams TD. Pre-and post-prandial appetite hormone levels in normal weight and severely obese women. Nutr Metab. 2009;6(1):32.CrossRefGoogle Scholar
  78. 78.
    Vatansever-Ozen S, Tiryaki-Sonmez G, Bugdayci G, Ozen G. The effects of exercise on food intake and hunger: relationship with acylated ghrelin and leptin. J Sports Sci Med. 2011;10(2):283.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Martins C, Kulseng B, Rehfeld JF, King NA, Blundell JE. Effect of chronic exercise on appetite control in overweight and obese individuals. Med Sci Sports Exerc. 2013;45(5):805–12.PubMedCrossRefGoogle Scholar
  80. 80.
    Yi X, Cao S, Chang B, Zhao D, Gao H, Wan Y, et al. Effects of acute exercise and chronic exercise on the liver leptin-AMPK-ACC signaling pathway in rats with type 2 diabetes. J Diabetes Res. 2013;2013:946432.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Guerra B, Olmedillas H, Guadalupe-Grau A, Ponce-González JG, Morales-Alamo D, Fuentes T, et al. Is sprint exercise a leptin signaling mimetic in human skeletal muscle? J Appl Physiol. 2011;111(3):715–25.PubMedCrossRefGoogle Scholar
  82. 82.
    Landt M, Lawson GM, Helgeson JM, Davila-Roman VG, Ladenson JH, Jaffe AS, et al. Prolonged exercise decreases serum leptin concentrations. Metabolism. 1997;46(10):1109–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Weltman A, Pritzlaff C, Wideman L, Considine R, Fryburg D, Gutgesell M, et al. Intensity of acute exercise does not affect serum leptin concentrations in young men. Med Sci Sports Exerc. 2000;32(9):1556–61.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bouassida A, Zalleg D, Zaouali M, Gharbi N, Fekih Y, Richalet J, et al. Effets d’un exercice supra-maximal sur les concentrations de la leptine plasmatique. Sci Sports. 2004;19(3):136–8.CrossRefGoogle Scholar
  85. 85.
    Torjman M, Zafeiridis A, Paolone A, Wilkerson C, Considine R. Serum leptin during recovery following maximal incremental and prolonged exercise. Int J Sports Med. 1999;20(07):444–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Essig DA, Alderson NL, Ferguson MA, Bartoli WP, Durstine JL. Delayed effects of exercise on the plasma leptin concentration. Metabolism. 2000;49(3):395–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Olive JL, Miller GD. Differential effects of maximal-and moderate-intensity runs on plasma leptin in healthy trained subjects. Nutrition. 2001;17(5):365–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Kraemer R, Johnson L, Haltom R, Kraemer G, Hebert E, Gimpel T, et al. Serum leptin concentrations in response to acute exercise in postmenopausal women with and without hormone replacement therapy. Proc Soc Exp Biol Med. 1999;221(3):171–7.PubMedGoogle Scholar
  89. 89.
    Nindl BC, Kraemer WJ, Arciero PJ, Samatallee N, Leone CD, Mayo MF, et al. Leptin concentrations experience a delayed reduction after resistance exercise in men. Med Sci Sports Exerc. 2002;34(4):608–13.PubMedGoogle Scholar
  90. 90.
    Zaccaria M, Ermolao A, Roi G, Englaro P, Tegon G, Varnier M. Leptin reduction after endurance races differing in duration and energy expenditure. Eur J Appl Physiol. 2002;87(2):108–11.PubMedCrossRefGoogle Scholar
  91. 91.
    Ferguson MA, White LJ, McCoy S, Kim H-W, Petty T, Wilsey J. Plasma adiponectin response to acute exercise in healthy subjects. Eur J Appl Physiol. 2004;91(2–3):324–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Jürimäe J, Hofmann P, Jürimäe T, Mäestu J, Purge P, Wonisch M, et al. Plasma adiponectin response to sculling exercise at individual anaerobic threshold in college level male rowers. Int J Sports Med. 2006;27(04):272–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Kyriazis GA, Caplan JD, Lowndes J, Carpenter RL, Dennis KE, Sivo SA, et al. Moderate exercise-induced energy expenditure does not alter leptin levels in sedentary obese men. Clin J Sport Med. 2007;17(1):49–51.PubMedCrossRefGoogle Scholar
  94. 94.
    Racette SB, Coppack SW, Landt M, Klein S. Leptin production during moderate-intensity aerobic exercise. J Clin Endocrinol Metabol. 1997;82(7):2275–7.Google Scholar
  95. 95.
    Tuominen JA, Ebeling P, Laquier F, Heiman M, Stephens T, Koivisto V. Serum leptin concentration and fuel homeostasis in healthy man. Eur J Clin Invest. 1997;27(3):206–11.PubMedCrossRefGoogle Scholar
  96. 96.
    Dede ND, Ipekci SH, Kebapcilar L, Arslan M, Kurban S, Yildiz M, et al. Influence of exercise on leptin, adiponectin and quality of life in type 2 diabetics. Turkish J Endocrinol Metab. 2015;19(1):7–13.  https://doi.org/10.4274/tjem.2564CrossRefGoogle Scholar
  97. 97.
    Murakami T, Horigome H, Tanaka K, Nakata Y, Katayama Y, Matsui A. Effects of diet with or without exercise on leptin and anticoagulation proteins levels in obesity. Blood Coagul Fibrinolysis. 2007;18(5):389–94.PubMedCrossRefGoogle Scholar
  98. 98.
    Sari R, Balci MK, Balci N, Karayalcin U. Acute effect of exercise on plasma leptin level and insulin resistance in obese women with stable caloric intake. Endocr Res. 2007;32(1–2):9–17.PubMedCrossRefGoogle Scholar
  99. 99.
    Koutsari C, Karpe F, Humphreys S, Frayn K, Hardman A. Plasma leptin is influenced by diet composition and exercise. Int J Obes (Lond). 2003;27(8):901.CrossRefGoogle Scholar
  100. 100.
    Ordonez FJ, Fornieles-Gonzalez G, Camacho A, Rosety MA, Rosety I, Diaz AJ, et al. Anti-inflammatory effect of exercise, via reduced leptin levels, in obese women with Down syndrome. Int J Sport Nutr Exerc Metab. 2013;23(3):239–44.PubMedCrossRefGoogle Scholar
  101. 101.
    Gomez-Merino D, Chennaoui M, Drogou C, Bonneau D, Guezennec CY. Decrease in serum leptin after prolonged physical activity in men. Med Sci Sports Exerc. 2002;34(10):1594–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Unal M, Unal D, Baltaci A, Mogulkoc R. Investigation of serum leptin levels and VO2max value in trained young male athletes and healthy males. Acta Physiol Hung. 2005;92(2):173–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Fatouros I, Tournis S, Leontsini D, Jamurtas A, Sxina M, Thomakos P, et al. Leptin and adiponectin responses in overweight inactive elderly following resistance training and detraining are intensity related. J Clin Endocrinol Metabol. 2005;90(11):5970–7.CrossRefGoogle Scholar
  104. 104.
    Ishii T, Yamakita T, Yamagami K, Yamamoto T, Miyamoto M, Kawasaki K, et al. Effect of exercise training on serum leptin levels in type 2 diabetic patients. Metabolism. 2001;50(10):1136–40.PubMedCrossRefGoogle Scholar
  105. 105.
    Hickey MS, Houmard JA, Considine RV, Tyndall GL, Midgette JB, Gavigan KE, et al. Gender-dependent effects of exercise training on serum leptin levels in humans. Am J Physiol. 1997;272(4):E562–E6.PubMedGoogle Scholar
  106. 106.
    Okazaki T, Himeno E, Nanri H, Ogata H, Ikeda M. Effects of mild aerobic exercise and a mild hypocaloric diet on plasma leptin in sedentary women. Clin Exp Pharmacol Physiol. 1999;26(5–6):415–20.PubMedCrossRefGoogle Scholar
  107. 107.
    Herrick JE, Panza GS, Gollie JM. Leptin, leptin soluble receptor, and the free leptin index following a diet and physical activity lifestyle intervention in obese males and females. J Obes. 2016;2016:8375828.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ackel-D’Elia C, Carnier J, Bueno C Jr, Campos R, Sanches P, Clemente A, et al. Effects of different physical exercises on leptin concentration in obese adolescents. Int J Sports Med. 2014;35(02):164–71.PubMedGoogle Scholar
  109. 109.
    Ko I-G, Choi P-B. Regular exercise modulates obesity factors and body composition in sturdy men. J Exerc Rehabil. 2013;9(2):256.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kohrt WM, Landt M, Birge S Jr. Serum leptin levels are reduced in response to exercise training, but not hormone replacement therapy, in older women. J Clin Endocrinol Metab. 1996;81(11):3980–5.PubMedGoogle Scholar
  111. 111.
    Pasman W, Westerterp-Plantenga M, Saris W. The effect of exercise training on leptin levels in obese males. Am J Physiol. 1998;274(2):E280–E6.PubMedGoogle Scholar
  112. 112.
    Hayase H, Nomura S, Abe T, Izawa T. Relation between fat distributions and several plasma adipocytokines after exercise training in premenopausal and postmenopausal women. J Physiol Anthropol Appl Human Sci. 2002;21(2):105–13.PubMedCrossRefGoogle Scholar
  113. 113.
    Carter RA, McCutcheon LJ, Valle E, Meilahn EN, Geor RJ. Effects of exercise training on adiposity, insulin sensitivity, and plasma hormone and lipid concentrations in overweight or obese, insulin-resistant horses. Am J Vet Res. 2010;71(3):314–21.PubMedCrossRefGoogle Scholar
  114. 114.
    Houmard JA, Cox JH, MacLean PS, Barakat HA. Effect of short-term exercise training on leptin and insulin action. Metabolism. 2000;49(7):858–61.PubMedCrossRefGoogle Scholar
  115. 115.
    Gippini A, Mato A, Peino R, Lage M, Dieguez C, Casanueva F. Effect of resistance exercise (body building) training on serum leptin levels in young men. Implications for relationship between body mass index and serum leptin. J Endocrinol Invest. 1999;22(11):824–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Kraemer R, Acevedo E, Synovitz L, Hebert E, Gimpel T, Castracane V. Leptin and steroid hormone responses to exercise in adolescent female runners over a 7-week season. Eur J Appl Physiol. 2001;86(1):85–91.CrossRefGoogle Scholar
  117. 117.
    Kraemer R, Kraemer G, Acevedo E, Hebert E, Temple E, Bates M, et al. Effects of aerobic exercise on serum leptin levels in obese women. Eur J Appl Physiol Occup Physiol. 1999;80(2):154–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Pérusse L, Collier G, Gagnon J, Leon AS, Rao D, Skinner JS, et al. Acute and chronic effects of exercise on leptin levels in humans. J Appl Physiol. 1997;83(1):5–10.PubMedCrossRefGoogle Scholar
  119. 119.
    Reseland JE, Anderssen SA, Solvoll K, Hjermann I, Urdal P, Holme I, et al. Effect of long-term changes in diet and exercise on plasma leptin concentrations. Am J Clin Nutr. 2001;73(2):240–5.PubMedCrossRefGoogle Scholar
  120. 120.
    Unal M, Unal DO, Baltaci AK, Mogulkoc R, Kayserilioglu A. Investigation of serum leptin levels in professional male football players and healthy sedentary males. Neuroendocrinology Letters. 2005;26(2):148–51.PubMedGoogle Scholar
  121. 121.
    Lau PW, Kong Z, Choi C-r, Clare C, Chan DF, Sung RY, et al. Effects of short-term resistance training on serum leptin levels in obese adolescents. J Exerc Sci Fit. 2010;8(1):54–60.CrossRefGoogle Scholar
  122. 122.
    Thong FS, Hudson R, Ross R, Janssen I, Graham TE. Plasma leptin in moderately obese men: independent effects of weight loss and aerobic exercise. Am J Physiol. 2000;279(2):E307–E13.Google Scholar
  123. 123.
    Little T, Horowitz M, Feinle-Bisset C. Role of cholecystokinin in appetite control and body weight regulation. Obes Rev. 2005;6(4):297–306.PubMedCrossRefGoogle Scholar
  124. 124.
    Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365(17):1597–604.PubMedCrossRefGoogle Scholar
  125. 125.
    Chearskul S, Delbridge E, Shulkes A, Proietto J, Kriketos A. Effect of weight loss and ketosis on postprandial cholecystokinin and free fatty acid concentrations. Am J Clin Nutr. 2008;87(5):1238–46.PubMedCrossRefGoogle Scholar
  126. 126.
    Bailey DM, Davies B, Castell LM, Newsholme EA, Calam J. Physical exercise and normobaric hypoxia: independent modulators of peripheral cholecystokinin metabolism in man. J Appl Physiol. 2001;90(1):105–13.PubMedCrossRefGoogle Scholar
  127. 127.
    Philipp E, Wilckens T, Friess E, Platte P, Pirke K-M. Cholecystokinin, gastrin and stress hormone responses in marathon runners. Peptides. 1992;13(1):125–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Ströhle A, Feller C, Strasburger CJ, Heinz A, Dimeo F. Anxiety modulation by the heart? Aerobic exercise and atrial natriuretic peptide. Psychoneuroendocrinology. 2006;31(9):1127–30.PubMedCrossRefGoogle Scholar
  129. 129.
    Bailey DM, Davies B, Milledge JS, Richards M, Williams S, Jordinson M, et al. Elevated plasma cholecystokinin at high altitude: metabolic implications for the anorexia of acute mountain sickness. High Alt Med Biol. 2000;1(1):9–23.PubMedCrossRefGoogle Scholar
  130. 130.
    Ohta M, Ichikawa M, Sazaki N, Okubo K, Miyasaka K, Fujita Y, et al. Effect of long-term exercise under restricted-feeding on intestinal content of cholecystokinin and on the pancreas in aging rats. Arch Gerontol Geriatr. 1994;18(1):43–51.PubMedCrossRefGoogle Scholar
  131. 131.
    Hirschberg AL, Lindholm C, Carlström K, Von Schoultz B. Reduced serum cholecystokinin response to food intake in female athletes. Metabolism. 1994;43(2):217–22.PubMedCrossRefGoogle Scholar
  132. 132.
    Miyatake N, Takahashi K, Wada J, Nishikawa H, Morishita A, Suzuki H, et al. Changes in serum leptin concentrations in overweight Japanese men after exercise. Diabetes Obes Metab. 2004;6(5):332–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Pocai A. Action and therapeutic potential of oxyntomodulin. Molecular metabolism. 2014;3(3):241–51.PubMedCrossRefGoogle Scholar
  134. 134.
    Baggio LL, Huang Q, Brown TJ, Drucker DJ. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology. 2004;127(2):546–58.PubMedCrossRefGoogle Scholar
  135. 135.
    Wynne K, Park A, Small C, Meeran K, Ghatei M, Frost G, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond). 2006;30(12):1729.CrossRefGoogle Scholar
  136. 136.
    Wynne K, Park AJ, Small CJ, Patterson M, Ellis SM, Murphy KG, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes. 2005;54(8):2390–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metabol. 2003;88(10):4696–701.CrossRefGoogle Scholar
  138. 138.
    Shankar SS, Shankar R, Mixson L, Pramanik B, Stoch S, Steinberg HO, et al., editors. Oxyntomodulin has significant acute glucoregulatory effects comparable to liraglutide in subjects with type 2 diabetes. Diabetologia. New York: Springer. 2013.Google Scholar
  139. 139.
    Liu Y, Ford H, Druce M, Minnion J, Field B, Shillito J, et al. Subcutaneous oxyntomodulin analogue administration reduces body weight in lean and obese rodents. Int J Obes (Lond). 2010;34(12):1715.CrossRefGoogle Scholar
  140. 140.
    Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metabol. 2002;87(1):240–4.CrossRefGoogle Scholar
  141. 141.
    McLaughlin T, Abbasi F, Lamendola C, Frayo RS, Cummings DE. Plasma ghrelin concentrations are decreased in insulin-resistant obese adults relative to equally obese insulin-sensitive controls. J Clin Endocrinol Metabol. 2004;89(4):1630–5.CrossRefGoogle Scholar
  142. 142.
    Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50(8):1714–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    English P, Ghatei M, Malik I, Bloom S, Wilding J. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metabol. 2002;87(6):2984–7.CrossRefGoogle Scholar
  145. 145.
    Druce M, Wren A, Park A, Milton J, Patterson M, Frost G, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes (Lond). 2005;29(9):1130.CrossRefGoogle Scholar
  146. 146.
    Wren A, Seal L, Cohen M, Brynes A, Frost G, Murphy K, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Burns SF, Broom DR, Miyashita M, Mundy C, Stensel DJ. A single session of treadmill running has no effect on plasma total ghrelin concentrations. J Sports Sci. 2007;25(6):635–42.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Malkova D, McLaughlin R, Manthou E, Wallace A, Nimmo M. Effect of moderate-intensity exercise session on preprandial and postprandial responses of circulating ghrelin and appetite. Horm Metab Res. 2008;40(06):410–5.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Toshinai K, Kawagoe T, Shimbara T, Tobina T, Nishida Y, Mondal M, et al. Acute incremental exercise decreases plasma ghrelin level in healthy men. Horm Metab Res. 2007;39(11):849–51.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Vestergaard ET, Dall R, Lange K, Kjaer M, Christiansen JS, Jorgensen J. The ghrelin response to exercise before and after growth hormone administration. J Clin Endocrinol Metabol. 2007;92(1):297–303.CrossRefGoogle Scholar
  151. 151.
    Ballard TP, Melby CL, Camus H, Cianciulli M, Pitts J, Schmidt S, et al. Effect of resistance exercise, with or without carbohydrate supplementation, on plasma ghrelin concentrations and postexercise hunger and food intake. Metabolism-Clinical and Experimental. 2009;58(8):1191–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Ghanbari-Niaki A. Ghrelin and glucoregulatory hormone responses to a single circuit resistance exercise in male college students. Clin Biochem. 2006;39(10):966–70.PubMedCrossRefGoogle Scholar
  153. 153.
    Kraemer R, Durand R, Acevedo E, Johnson L, Kraemer G, Hebert E, et al. Rigorous running increases growth hormone and insulin-like growth factor-I without altering ghrelin. Exp Biol Med. 2004;229(3):240–6.CrossRefGoogle Scholar
  154. 154.
    Tiryaki-Sonmez G, Ozen S, Bugdayci G, Karli U, Ozen G, Cogalgil S, et al. Effect of exercise on appetite-regulating hormones in overweight women. Biol Sport. 2013;30(2):75.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Metcalfe RS, Koumanov F, Ruffino JS, Stokes KA, Holman GD, Thompson D, et al. Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT). Eur J Appl Physiol. 2015;115(11):2321–34.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Leidy HJ, Dougherty KA, Frye BR, Duke KM, Williams NI. Twenty-four-hour Ghrelin is elevated after calorie restriction and exercise training in non-obese women. Obesity. 2007;15(2):446–55.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Morpurgo P, Resnik M, Agosti F, Cappiello V, Sartorio A, Spada A. Ghrelin secretion in severely obese subjects before and after a 3-week integrated body mass reduction program. J Endocrinol Invest. 2003;26(8):723–7.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Foster-Schubert KE, McTiernan A, Frayo RS, Schwartz RS, Rajan KB, Yasui Y, et al. Human plasma ghrelin levels increase during a one-year exercise program. J Clin Endocrinol Metabol. 2005;90(2):820–5.CrossRefGoogle Scholar
  159. 159.
    Ueda H, Yagi T, Amitani H, Asakawa A, Ikeda S, Miyawaki S, et al. The roles of salivary secretion, brain–gut peptides, and oral hygiene in obesity. Obes Res Clin Pract. 2013;7(5):e321–e9.PubMedCrossRefGoogle Scholar
  160. 160.
    Hagobian TA, Sharoff CG, Stephens BR, Wade GN, Silva JE, Chipkin SR, et al. Effects of exercise on energy-regulating hormones and appetite in men and women. Am J Physiol. 2009;296(2):R233–R42.CrossRefGoogle Scholar
  161. 161.
    Konopko-Zubrzycka M, Baniukiewicz A, Wroblewski E, Kowalska I, Zarzycki W, Górska M, et al. The effect of intragastric balloon on plasma ghrelin, leptin, and adiponectin levels in patients with morbid obesity. J Clin Endocrinol Metabol. 2009;94(5):1644–9.CrossRefGoogle Scholar
  162. 162.
    Kelishadi R, Hashemipour M, Mohammadifard N, Alikhassy H, Adeli K. Short-and long-term relationships of serum ghrelin with changes in body composition and the metabolic syndrome in prepubescent obese children following two different weight loss programmes. Clin Endocrinol (Oxf). 2008;69(5):721–9.CrossRefGoogle Scholar
  163. 163.
    Santosa S, Demonty I, Lichtenstein AH, Cianflone K, Jones PJ. An investigation of hormone and lipid associations after weight loss in women. J Am Coll Nutr. 2007;26(3):250–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Arikan S, Serpek B. The effects of endurance training on the relationships body composition plasma ghrelin and leptin levels. Turkish J Sport Exerc. 2016;18(1):119–26.CrossRefGoogle Scholar
  165. 165.
    Kang S-J, Kim J-H, Gang Z, Yook Y-S, Yoon J-R, Ha G-C, et al. Effects of 12-week circuit exercise program on obesity index, appetite regulating hormones, and insulin resistance in middle-aged obese females. J Phys Ther Sci. 2018;30(1):169–73.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Leidy H, Gardner J, Frye B, Snook M, Schuchert M, Richard E, et al. Circulating ghrelin is sensitive to changes in body weight during a diet and exercise program in normal-weight young women. J Clin Endocrinol Metabol. 2004;89(6):2659–64.CrossRefGoogle Scholar
  167. 167.
    Gholipour M, Kordi M, Taghikhani M, Ravasi A, Gaeini A, Tabrizi A. The acute effects of intermittent treadmill running on hunger and plasma acylated ghrelin concentration in individuals with obesity. Tehran Univ Med J. 2011;69(2):125–135.Google Scholar
  168. 168.
    Garcia JM, Iyer D, Poston WS, Marcelli M, Reeves R, Foreyt J, et al. Rise of plasma ghrelin with weight loss is not sustained during weight maintenance. Obesity. 2006;14(10):1716–23.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Flanagan DE, Evans ML, Monsod TP, Rife F, Heptulla RA, Tamborlane WV, et al. The influence of insulin on circulating ghrelin. Am J Physiol. 2003;284(2):E313–E6.Google Scholar
  170. 170.
    Tsofliou F, Pitsiladis Y, Malkova D, Wallace A, Lean M. Moderate physical activity permits acute coupling between serum leptin and appetite–satiety measures in obese women. Int J Obes (Lond). 2003;27(11):1332.CrossRefGoogle Scholar
  171. 171.
    Minokoshi Y, Alquier T, Furukawa N, Kim Y-B, Lee A, Xue B, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004;428(6982):569.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Kim K, Lopez-Casillas F, Bai D, Luo X, Pape M. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J. 1989;3(11):2250–6.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Hu Z, Dai Y, Prentki M, Chohnan S, Lane MD. A role for hypothalamic malonyl-CoA in the control of food intake. J Biol Chem. 2005;280(48):39681–3.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Hu Z, Cha SH, Chohnan S, Lane MD. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc Natl Acad Sci. 2003;100(22):12624–9.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science. 2000;288(5475):2379–81.PubMedCrossRefGoogle Scholar
  176. 176.
    Gao S, Kinzig KP, Aja S, Scott KA, Keung W, Kelly S, et al. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc Natl Acad Sci. 2007;104(44):17358–63.PubMedCrossRefGoogle Scholar
  177. 177.
    Gao S, Keung W, Serra D, Wang W, Carrasco P, Casals N, et al. Malonyl-CoA mediates leptin hypothalamic control of feeding independent of inhibition of CPT-1a. Am J Physiol. 2011;301(1):R209–R17.Google Scholar
  178. 178.
    Wolfgang MJ, Cha SH, Sidhaye A, Chohnan S, Cline G, Shulman GI, et al. Regulation of hypothalamic malonyl-CoA by central glucose and leptin. Proc Natl Acad Sci. 2007;104(49):19285–90.PubMedCrossRefGoogle Scholar
  179. 179.
    Rasmussen B, Winder W. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J Appl Physiol. 1997;83(4):1104–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Kuhl JE, Ruderman NB, Musi N, Goodyear LJ, Patti ME, Crunkhorn S, et al. Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. Am J Physiol. 2006;290(6):E1296–E303.Google Scholar
  181. 181.
    Hackney AC, ed. Sex hormones, exercise and women: scientific and clinical aspects. Cham, Switzerland: Springer International; 2016.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hassane Zouhal
    • 1
    Email author
  • Ayoub Saeidi
    • 2
  • Sarkawt Kolahdouzi
    • 3
  • Sajad Ahmadizad
    • 2
  • Anthony C. Hackney
    • 4
  • Abderraouf Ben Abderrahmane
    • 5
  1. 1.Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé)RennesFrance
  2. 2.Department of Biological Sciences in Sport and Health, Faculty of Sports Sciences and HealthShahid Beheshti UniversityTehranIran
  3. 3.Exercise Biochemistry Division, Department of Exercise Physiology, Faculty of Sport SciencesUniversity of MazandaranBabolsarIran
  4. 4.Department of Exercise & Sport Science, Department of NutritionUniversity of North CarolinaChapel HillUSA
  5. 5.Higher Institute of Sport Sciences and Physical Education of Ksar Saïd, Department of Biological SciencesArianaTunisia

Personalised recommendations