Advertisement

Type I Diabetes and Exercise

  • Sam N. Scott
  • Michael C. RiddellEmail author
  • Jane E. Yardley
Chapter
  • 122 Downloads
Part of the Contemporary Endocrinology book series (COE)

Abstract

Regular exercise has many recognized health benefits for individuals with type 1 diabetes (T1D). However, barriers including fear of hypoglycemia, loss of glycemic control, and inadequate knowledge around blood glucose management during different forms of exercise represent major challenges for people with T1D. This chapter outlines the latest research concerning the benefits of regular exercise and the numerous factors that influence blood glucose responses during exercise in people with T1D. The chapter concludes by briefly highlighting upcoming research in the area of exercise and technology which may aid blood glucose management and potentially reduce the barriers to exercise for those living with T1D.

Keywords

Type 1 diabetes Insulin Exercise Hypoglycemia Hyperglycemia Hormones Artificial pancreas Glucagon Glucose Glycemia 

References

  1. 1.
    Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet Lond Engl. 2001;358(9277):221–9.CrossRefGoogle Scholar
  2. 2.
    Rogers MAM, Kim C, Banerjee T, Lee JM. Fluctuations in the incidence of type 1 diabetes in the United States from 2001 to 2015: a longitudinal study. BMC Med. 2017;15(1):199.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    International Diabetes Federation, IDF Diabetes Atlas 8th Edition. 2018. [cited Nov 11, 2019]. Available from: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/134-idf-diabetes-atlas-8thedition.html.
  4. 4.
    Dawson SI, Willis J, Florkowski CM, Scott RS. All-cause mortality in insulin-treated diabetic patients: a 20-year follow-up. Diabetes Res Clin Pract. 2008;80(1):e6–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Secrest AM, Becker DJ, Kelsey SF, LaPorte RE, Orchard TJ. All-cause mortality trends in a large population-based cohort with long-standing childhood-onset type 1 diabetes: the Allegheny County type 1 diabetes registry. Diabetes Care. 2010;33(12):2573–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    McCarthy MM, Funk M, Grey M. Cardiovascular health in adults with type 1 diabetes. Prev Med. 2016;91:138–43.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Scott SN, Cocks M, Andrews RC, Narendran P, Purewal TS, Cuthbertson DJ, et al. High-intensity interval training improves aerobic capacity without a detrimental decline in blood glucose in people with type 1 diabetes. J Clin Endocrinol Metab. 2019;104(2):604–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Chimen M, Kennedy A, Nirantharakumar K, Pang TT, Andrews R, Narendran P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia. 2012;55(3):542–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Codella R, Terruzzi I, Luzi L. Why should people with type 1 diabetes exercise regularly? Acta Diabetol. 2017;54(7):615–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Makura CB, Nirantharakumar K, Girling AJ, Saravanan P, Narendran P. Effects of physical activity on the development and progression of microvascular complications in type 1 diabetes: retrospective analysis of the DCCT study. BMC Endocr Disord. 2013;13:37.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tielemans SM, Soedamah-Muthu SS, De Neve M, Toeller M, Chaturvedi N, Fuller JH, et al. Association of physical activity with all-cause mortality and incident and prevalent cardiovascular disease among patients with type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetologia. 2013;56(1):82–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Sousa GR, Pober D, Galderisi A, Lv H, Yu L, Pereira AC, et al. Glycemic control, cardiac autoimmunity, and long-term risk of cardiovascular disease in type 1 diabetes mellitus: a DCCT/EDIC Cohort-Based Study. Circulation. 2018;139(6):730–43.CrossRefGoogle Scholar
  13. 13.
    Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care. 2006;29(4):798–804.PubMedCrossRefGoogle Scholar
  14. 14.
    Fuchsjäger-Mayrl G, Pleiner J, Wiesinger GF, Sieder AE, Quittan M, Nuhr MJ, et al. Exercise training improves vascular endothelial function in patients with type 1 diabetes. Diabetes Care. 2002;25(10):1795–801.PubMedCrossRefGoogle Scholar
  15. 15.
    Laaksonen DE, Atalay M, Niskanen LK, Mustonen J, Sen CK, Lakka TA, et al. Aerobic exercise and the lipid profile in type 1 diabetic men: a randomized controlled trial. Med Sci Sports Exerc. 2000;32(9):1541–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Moy CS, Songer TJ, LaPorte RE, Dorman JS, Kriska AM, Orchard TJ, et al. Insulin-dependent diabetes mellitus, physical activity. and death Am J Epidemiol. 1993;137(1):74–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Kilpatrick ES, Rigby AS, Atkin SL. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: ‘double diabetes’ in the Diabetes Control and Complications Trial. Diabetes Care. 2007;30(3):707–12.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    McGill M, Molyneaux L, Twigg SM, Yue DK. The metabolic syndrome in type 1 diabetes: does it exist and does it matter? J Diabetes Complicat. 2008;22(1):18–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Donga E, Dekkers OM, Corssmit EPM, Romijn JA. Insulin resistance in patients with type 1 diabetes assessed by glucose clamp studies: systematic review and meta-analysis. Eur J Endocrinol. 2015;173(1):101–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Tesfaye S, Chaturvedi N, Eaton SEM, Ward JD, Manes C, Ionescu-Tirgoviste C, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352(4):341–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Orchard TJ, Chang Y-F, Ferrell RE, Petro N, Ellis DE. Nephropathy in type 1 diabetes: a manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study. Kidney Int. 2002;62(3):963–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Giorgino F, Laviola L, Cavallo Perin P, Solnica B, Fuller J, Chaturvedi N. Factors associated with progression to macroalbuminuria in microalbuminuric type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia. 2004;47(6):1020–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Chaturvedi N, Sjoelie AK, Porta M, Aldington SJ, Fuller JH, Songini M, et al. Markers of insulin resistance are strong risk factors for retinopathy incidence in type 1 diabetes. Diabetes Care. 2001;24(2):284–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Orchard TJ, Olson JC, Erbey JR, Williams K, Forrest KY-Z, Smithline Kinder L, et al. Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: 10-year follow-up data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care. 2003;26(5):1374–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Ramalho AC, de Lourdes Lima M, Nunes F, Cambuí Z, Barbosa C, Andrade A, et al. The effect of resistance versus aerobic training on metabolic control in patients with type-1 diabetes mellitus. Diabetes Res Clin Pract. 2006;72(3):271–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Yki-Järvinen H, DeFronzo RA, Koivisto VA. Normalization of insulin sensitivity in type I diabetic subjects by physical training during insulin pump therapy. Diabetes Care. 1984;7(6):520–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Narendran P, Solomon TP, Kennedy A, Chimen M, Andrews RC. The time has come to test the beta cell preserving effects of exercise in patients with new onset type 1 diabetes. Diabetologia. 2015;58(1):10–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Chetan MR, Charlton MH, Thompson C, Dias RP, Andrews RC, Narendran P. The Type 1 diabetes ‘honeymoon’ period is five times longer in men who exercise: a case-control study. Diabet Med J Br Diabet Assoc. 2018;36(1):127–8.CrossRefGoogle Scholar
  29. 29.
    Steffes MW, Sibley S, Jackson M, Thomas W. Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care. 2003;26(3):832–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Lascar N, Kennedy A, Jackson N, Daley A, Dowswell G, Thompson D, et al. Exercise to preserve beta cell function in recent-onset type 1 diabetes mellitus (EXTOD)–a study protocol for a pilot randomized controlled trial. Trials. 2013;14:180.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Coleman SK, Rebalka IA, D’Souza DM, Hawke TJ. Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World J Diabetes. 2015;6(17):1323–36.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes. 2011;12(4 Pt 1):345–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Monaco CMF, Hughes MC, Ramos SV, Varah NE, Lamberz C, Rahman FA, et al. Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia. 2018;61(6):1411–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Baron AD, Laakso M, Brechtel G, Edelman SV. Mechanism of insulin resistance in insulin-dependent diabetes mellitus: a major role for reduced skeletal muscle blood flow. J Clin Endocrinol Metab. 1991;73(3):637–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Mäkimattila S, Virkamäki A, Malmström R, Utriainen T, Yki-Jarvinen H. Insulin resistance in type I diabetes mellitus: a major role for reduced glucose extraction. J Clin Endocrinol Metab. 1996;81(2):707–12.PubMedGoogle Scholar
  36. 36.
    Cabrera SM, Henschel AM, Hessner MJ. Innate inflammation in type 1 diabetes. Transl Res J Lab Clin Med. 2016;167(1):214–27.Google Scholar
  37. 37.
    Russell NE, Higgins MF, Amaruso M, Foley M, McAuliffe FM. Troponin T and pro-B-type natriuretic Peptide in fetuses of type 1 diabetic mothers. Diabetes Care. 2009;32(11):2050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Arthur PG, Grounds MD, Shavlakadze T. Oxidative stress as a therapeutic target during muscle wasting: considering the complex interactions. Curr Opin Clin Nutr Metab Care. 2008;11(4):408–16.PubMedCrossRefGoogle Scholar
  39. 39.
    Bloch-Damti A, Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal. 2005;7(11–12):1553–67.PubMedCrossRefGoogle Scholar
  40. 40.
    Galassetti PR, Iwanaga K, Crisostomo M, Zaldivar FP, Larson J, Pescatello A. Inflammatory cytokine, growth factor and counterregulatory responses to exercise in children with type 1 diabetes and healthy controls. Pediatr Diabetes. 2006;7(1):16–24.CrossRefGoogle Scholar
  41. 41.
    Rosa JS, Flores RL, Oliver SR, Pontello AM, Zaldivar FP, Galassetti PR. Resting and exercise-induced IL-6 levels in children with Type 1 diabetes reflect hyperglycemic profiles during the previous 3 days. J Appl Physiol (Bethesda, MD 1985). 2010;108(2):334–42.CrossRefGoogle Scholar
  42. 42.
    Rosa JS, Oliver SR, Flores RL, Ngo J, Milne GL, Zaldivar FP, et al. Altered inflammatory, oxidative, and metabolic responses to exercise in pediatric obesity and type 1 diabetes. Pediatr Diabetes. 2011;12(5):464–72.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.PubMedGoogle Scholar
  44. 44.
    Dubé MC, Joanisse DR, Prud’homme D, Lemieux S, Bouchard C, Pérusse L, et al. Muscle adiposity and body fat distribution in type 1 and type 2 diabetes: varying relationships according to diabetes type. Int J Obes 2005. 2006;30(12):1721–8.Google Scholar
  45. 45.
    Perseghin G, Lattuada G, Danna M, Sereni LP, Maffi P, De Cobelli F, et al. Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes. Am J Physiol Endocrinol Metab. 2003;285(6):E1174–81.PubMedCrossRefGoogle Scholar
  46. 46.
    van Herpen NA, Schrauwen-Hinderling VB. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav. 2008;94(2):231–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Shepherd SO, Cocks M, Meikle PJ, Mellett NA, Ranasinghe AM, Barker TA, et al. Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males. Int J Obes. 2017;41(12):1745–54.CrossRefGoogle Scholar
  48. 48.
    Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495–505.PubMedCrossRefGoogle Scholar
  49. 49.
    Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Investig. 2000;23(5):295–303.CrossRefGoogle Scholar
  50. 50.
    Sellmeyer DE, Civitelli R, Hofbauer LC, Khosla S, Lecka-Czernik B, Schwartz AV. Skeletal metabolism, fracture risk, and fracture outcomes in type 1 and type 2 diabetes. Diabetes. 2016;65(7):1757–66.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Barlet JP, Coxam V, Davicco MJ. Physical exercise and the skeleton. Arch Physiol Biochem. 1995;103(6):681–98.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    American College of Sports Medicine Position Stand. Osteoporosis and exercise. Med Sci Sports Exerc. 1995;27(4):i–vii.Google Scholar
  53. 53.
    Maggio ABR, Rizzoli RR, Marchand LM, Ferrari S, Beghetti M, Farpour-Lambert NJ. Physical activity increases bone mineral density in children with type 1 diabetes. Med Sci Sports Exerc. 2012;44(7):1206–11.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Durak EP, Jovanovic-Peterson L, Peterson CM. Randomized crossover study of effect of resistance training on glycemic control, muscular strength, and cholesterol in type I diabetic men. Diabetes Care. 1990;13(10):1039–43.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Mosher PE, Nash MS, Perry AC, LaPerriere AR, Goldberg RB. Aerobic circuit exercise training: effect on adolescents with well-controlled insulin-dependent diabetes mellitus. Arch Phys Med Rehabil. 1998;79(6):652–7.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Russell TA. Diabetic nephropathy in patients with type 1 diabetes mellitus. Nephrol Nurs J J Am Nephrol Nurses Assoc. 2006;33(1):15–28; quiz 29–30.Google Scholar
  58. 58.
    Baker NL, Hunt KJ, Stevens DR, Jarai G, Rosen GD, Klein RL, et al. Association between inflammatory markers and progression to kidney dysfunction: examining different assessment windows in patients with type 1 diabetes. Diabetes Care. 2018;41(1):128–35.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Wadén J, Tikkanen HK, Forsblom C, Harjutsalo V, Thorn LM, Saraheimo M, et al. Leisure-time physical activity and development and progression of diabetic nephropathy in type 1 diabetes: the FinnDiane Study. Diabetologia. 2015;58(5):929–36.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Bjornstad P, Cree-Green M, Baumgartner A, Maahs DM, Cherney DZ, Pyle L, et al. Renal function is associated with peak exercise capacity in adolescents with type 1 diabetes. Diabetes Care. 2015;38(1):126–31.PubMedCrossRefGoogle Scholar
  61. 61.
    Ekstrand AV, Groop PH, Grönhagen-Riska C. Insulin resistance precedes microalbuminuria in patients with insulin-dependent diabetes mellitus. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc – Eur Ren Assoc. 1998;13(12):3079–83.Google Scholar
  62. 62.
    Brazeau A-S, Gingras V, Leroux C, Suppère C, Mircescu H, Desjardins K, et al. A pilot program for physical exercise promotion in adults with type 1 diabetes: the PEP-1 program. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2014;39(4):465–71.CrossRefGoogle Scholar
  63. 63.
    Brazeau A-S, Rabasa-Lhoret R, Strychar I, Mircescu H. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care. 2008;31(11):2108–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Jabbour G, Henderson M, Mathieu M-E. Barriers to active lifestyles in children with type 1 diabetes. Can J Diabetes. 2016;40(2):170–2.PubMedCrossRefGoogle Scholar
  65. 65.
    Lascar N, Kennedy A, Hancock B, Jenkins D, Andrews RC, Greenfield S, et al. Attitudes and barriers to exercise in adults with Type 1 Diabetes (T1DM) and how best to address them: a qualitative study. Petersen I, editor PLoS ONE. 2014;9(9):e108019.CrossRefGoogle Scholar
  66. 66.
    Kennedy A, Narendran P, Andrews RC, Daley A, Greenfield SM, EXTOD Group. Attitudes and barriers to exercise in adults with a recent diagnosis of type 1 diabetes: a qualitative study of participants in the Exercise for Type 1 Diabetes (EXTOD) study. BMJ Open. 2018;8(1):e017813.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ryninks K, Sutton E, Thomas E, Jago R, Shield JPH, Burren CP. Attitudes to exercise and diabetes in young people with type 1 diabetes mellitus: a qualitative analysis. PLoS One. 2015;10(10):e0137562.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Quirk H, Blake H, Dee B, Glazebrook C. ‘You can’t just jump on a bike and go’: a qualitative study exploring parents’ perceptions of physical activity in children with type 1 diabetes. BMC Pediatr. 2014;14:313.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Martyn-Nemeth P, Quinn L, Penckofer S, Park C, Hofer V, Burke L. Fear of hypoglycemia: influence on glycemic variability and self-management behavior in young adults with type 1 diabetes. J Diabetes Complicat. 2017;31(4):735–41.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Riddell MC, Zaharieva DP, Yavelberg L, Cinar A, Jamnik VK. Exercise and the development of the artificial pancreas: one of the more difficult series of hurdles. J Diabetes Sci Technol. 2015;9(6):1217–26.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    International Hypoglycaemia Study Group. Glucose concentrations of less than 3.0 mmol/L (54 mg/dL) should be reported in clinical trials: a joint position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2017;40(1):155–7.CrossRefGoogle Scholar
  72. 72.
    Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, et al. Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care. 2013;36(5):1384–95.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Becker DJ, Ryan CM. Hypoglycemia: a complication of diabetes therapy in children. Trends Endocrinol Metab TEM. 2000;11(5):198–202.PubMedCrossRefGoogle Scholar
  74. 74.
    Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care. 2003;26(6):1902–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Cryer PE, Axelrod L, Grossman AB, Heller SR, Montori VM, Seaquist ER, et al. Evaluation and management of adult hypoglycemic disorders: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2009;94(3):709–28.PubMedCrossRefGoogle Scholar
  76. 76.
    Brod M, Wolden M, Groleau D, Bushnell DM. Understanding the economic, daily functioning, and diabetes management burden of non-severe nocturnal hypoglycemic events in Canada: differences between type 1 and type 2. J Med Econ. 2014;17(1):11–20.PubMedCrossRefGoogle Scholar
  77. 77.
    Geelhoed-Duijvestijn PH, Pedersen-Bjergaard U, Weitgasser R, Lahtela J, Jensen MM, Östenson C-G. Effects of patient-reported non-severe hypoglycemia on healthcare resource use, work-time loss, and wellbeing in insulin-treated patients with diabetes in seven European countries. J Med Econ. 2013;16(12):1453–61.PubMedCrossRefGoogle Scholar
  78. 78.
    Östenson CG, Geelhoed-Duijvestijn P, Lahtela J, Weitgasser R, Markert Jensen M, Pedersen-Bjergaard U. Self-reported non-severe hypoglycaemic events in Europe. Diabet Med J Br Diabet Assoc. 2014;31(1):92–101.CrossRefGoogle Scholar
  79. 79.
    Kubiak T, Hermanns N, Schreckling HJ, Kulzer B, Haak T. Assessment of hypoglycaemia awareness using continuous glucose monitoring. Diabet Med J Br Diabet Assoc. 2004;21(5):487–90.CrossRefGoogle Scholar
  80. 80.
    Jauch-Chara K, Schultes B. Sleep and the response to hypoglycaemia. Best Pract Res Clin Endocrinol Metab. 2010;24(5):801–15.PubMedCrossRefGoogle Scholar
  81. 81.
    Gubitosi-Klug RA, Braffett BH, White NH, Sherwin RS, Service FJ, Lachin JM, et al. Risk of severe hypoglycemia in type 1 diabetes over 30 years of follow-up in the DCCT/EDIC Study. Diabetes Care. 2017;40(8):1010–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    MacLeod KM, Hepburn DA, Frier BM. Frequency and morbidity of severe hypoglycaemia in insulin-treated diabetic patients. Diabet Med J Br Diabet Assoc. 1993;10(3):238–45.CrossRefGoogle Scholar
  83. 83.
    Zhong VW, Juhaeri J, Cole SR, Kontopantelis E, Shay CM, Gordon-Larsen P, et al. Incidence and trends in hypoglycemia hospitalization in adults with type 1 and type 2 diabetes in England, 1998–2013: a retrospective cohort study. Diabetes Care. 2017;40(12):1651–60.PubMedCrossRefGoogle Scholar
  84. 84.
    Weinstock RS, Xing D, Maahs DM, Michels A, Rickels MR, Peters AL, et al. Severe hypoglycemia and diabetic ketoacidosis in adults with type 1 diabetes: results from the T1D Exchange clinic registry. J Clin Endocrinol Metab. 2013;98(8):3411–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Riddell MC, Gallen IW, Smart CE, Taplin CE, Adolfsson P, Lumb AN, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5(5):377–90.PubMedCrossRefGoogle Scholar
  86. 86.
    Wright RJ, Frier BM, Deary IJ. Effects of acute insulin-induced hypoglycemia on spatial abilities in adults with type 1 diabetes. Diabetes Care. 2009;32(8):1503–6.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Geddes J, Deary IJ, Frier BM. Effects of acute insulin-induced hypoglycaemia on psychomotor function: people with type 1 diabetes are less affected than non-diabetic adults. Diabetologia. 2008;51(10):1814–21.PubMedCrossRefGoogle Scholar
  88. 88.
    Iscoe KE, Corcoran M, Riddell MC. High rates of nocturnal hypoglycemia in a unique sports camp for athletes with type 1 diabetes: lessons learned from continuous glucose monitoring systems. Can J Diabetes. 2008;32(3):182–9.CrossRefGoogle Scholar
  89. 89.
    MacDonald MJ. Postexercise late-onset hypoglycemia in insulin-dependent diabetic patients. Diabetes Care. 1987;10(5):584–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Tsalikian E, Mauras N, Beck RW, Tamborlane WV, Janz KF, Chase HP, et al. Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus. J Pediatr. 2005;147(4):528–34.PubMedCrossRefGoogle Scholar
  91. 91.
    Davey RJ, Howe W, Paramalingam N, Ferreira LD, Davis EA, Fournier PA, et al. The effect of midday moderate-intensity exercise on postexercise hypoglycemia risk in individuals with type 1 diabetes. J Clin Endocrinol Metab. 2013;98(7):2908–14.PubMedCrossRefGoogle Scholar
  92. 92.
    Davis SN, Galassetti P, Wasserman DH, Tate D. Effects of antecedent hypoglycemia on subsequent counterregulatory responses to exercise. Diabetes. 2000;49(1):73–81.PubMedCrossRefGoogle Scholar
  93. 93.
    McMahon SK, Ferreira LD, Ratnam N, Davey RJ, Youngs LM, Davis EA, et al. Glucose requirements to maintain euglycemia after moderate-intensity afternoon exercise in adolescents with type 1 diabetes are increased in a biphasic manner. J Clin Endocrinol Metab. 2007;92(3):963–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Aronson R, Brown RE, Li A, Riddell MC. Optimal insulin correction factor in post-high-intensity exercise hyperglycemia in adults with type 1 diabetes: the FIT study. Diabetes Care. 2018;42(1):10–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Davey RJ, Paramalingam N, Retterath AJ, Lim EM, Davis EA, Jones TW, et al. Antecedent hypoglycaemia does not diminish the glycaemia-increasing effect and glucoregulatory responses of a 10 s sprint in people with type 1 diabetes. Diabetologia. 2014;57(6):1111–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Harmer AR, Chisholm DJ, McKenna MJ, Morris NR, Thom JM, Bennett G, et al. High-intensity training improves plasma glucose and acid-base regulation during intermittent maximal exercise in type 1 diabetes. Diabetes Care. 2007;30(5):1269–71.PubMedCrossRefGoogle Scholar
  97. 97.
    Mitchell TH, Abraham G, Schiffrin A, Leiter LA, Marliss EB. Hyperglycemia after intense exercise in IDDM subjects during continuous subcutaneous insulin infusion. Diabetes Care. 1988;11(4):311–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Purdon C, Brousson M, Nyveen SL, Miles PD, Halter JB, Vranic M, et al. The roles of insulin and catecholamines in the glucoregulatory response during intense exercise and early recovery in insulin-dependent diabetic and control subjects. J Clin Endocrinol Metab. 1993;76(3):566–73.PubMedGoogle Scholar
  99. 99.
    Sigal RJ, Purdon C, Fisher SJ, Halter JB, Vranic M, Marliss EB. Hyperinsulinemia prevents prolonged hyperglycemia after intense exercise in insulin-dependent diabetic subjects. J Clin Endocrinol Metab. 1994;79(4):1049–57.PubMedGoogle Scholar
  100. 100.
    Steppel JH, Horton ES. Exercise in the management of type 1 diabetes mellitus. Rev Endocr Metab Disord. 2003;4(4):355–60.PubMedCrossRefGoogle Scholar
  101. 101.
    Narendran P, Jackson N, Daley A, Thompson D, Stokes K, Greenfield S, et al. Exercise to preserve β-cell function in recent-onset type 1 diabetes mellitus (EXTOD) – a randomized controlled pilot trial. Diabet Med J Br Diabet Assoc. 2017;34(11):1521–31.CrossRefGoogle Scholar
  102. 102.
    Canadian Diabetes Association Clinical Practice Guidelines Expert Committee, Sigal RJ, Armstrong MJ, Colby P, Kenny GP, Plotnikoff RC, et al. Physical activity and diabetes. Can J Diabetes. 2013;37(Suppl 1):S40–4.Google Scholar
  103. 103.
    Adolfsson P, Riddell MC, Taplin CE, Davis EA, Fournier PA, Annan F, et al. ISPAD clinical practice consensus guidelines 2018: exercise in children and adolescents with diabetes. Pediatr Diabetes. 2018;19(Suppl 27):205–26.PubMedCrossRefGoogle Scholar
  104. 104.
    Johansen K, Svendsen PA, Lørup B. Variations in renal threshold for glucose in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1984;26(3):180–2.PubMedCrossRefGoogle Scholar
  105. 105.
    Dhatariya K. People with type 1 diabetes using short acting analogue insulins are less dehydrated than those with using human soluble insulin prior to onset of diabetic ketoacidosis. Med Hypotheses. 2008;71(5):706–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Chanchlani R, Joseph Kim S, Kim ED, Banh T, Borges K, Vasilevska-Ristovska J, et al. Incidence of hyperglycemia and diabetes and association with electrolyte abnormalities in pediatric solid organ transplant recipients. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc – Eur Ren Assoc. 2017;32(9):1579–86.Google Scholar
  107. 107.
    McNair P, Christensen MS, Christiansen C, Madsbad S, Transbøl I. Renal hypomagnesaemia in human diabetes mellitus: its relation to glucose homeostasis. Eur J Clin Investig. 1982;12(1):81–5.CrossRefGoogle Scholar
  108. 108.
    Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32(7):1335–43.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Buoite Stella A, Yardley J, Francescato MP, Morrison SA. Fluid intake habits in type 1 diabetes individuals during typical training bouts. Ann Nutr Metab. 2018;73(1):10–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3):543–68.PubMedCrossRefGoogle Scholar
  111. 111.
    Cryer PE. Hierarchy of physiological responses to hypoglycemia: relevance to clinical hypoglycemia in type I (insulin dependent) diabetes mellitus. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 1997;29(3):92–6.CrossRefGoogle Scholar
  112. 112.
    Robertson RP, Lafferty KJ, Haug CE, Weil R. Effect of human fetal pancreas transplantation on secretion of C-peptide and glucose tolerance in type I diabetics. Transplant Proc. 1987;19(1 Pt 3):2354–6.PubMedGoogle Scholar
  113. 113.
    Koyama Y, Coker RH, Denny JC, Lacy DB, Jabbour K, Williams PE, et al. Role of carotid bodies in control of the neuroendocrine response to exercise. Am J Physiol Endocrinol Metab. 2001;281(4):E742–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Bally L, Zueger T, Buehler T, Dokumaci AS, Speck C, Pasi N, et al. Metabolic and hormonal response to intermittent high-intensity and continuous moderate intensity exercise in individuals with type 1 diabetes: a randomised crossover study. Diabetologia. 2016;59(4):776–84.PubMedCrossRefGoogle Scholar
  115. 115.
    Vranic M, Kawamori R, Pek S, Kovacevic N, Wrenshall GA. The essentiality of insulin and the role of glucagon in regulating glucose utilization and production during strenuous exercise in dogs. J Clin Invest. 1976;57(2):245–55.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Vranic M, Ross G, Doi K, Lickley L. The role of glucagon-insulin interactions in control of glucose turnover and its significance in diabetes. Metabolism. 1976;25(11 Suppl 1):1375–80.PubMedCrossRefGoogle Scholar
  117. 117.
    Zinker BA, Mohr T, Kelly P, Namdaran K, Bracy DP, Wasserman DH. Exercise-induced fall in insulin: mechanism of action at the liver and effects on muscle glucose metabolism. Am J Phys. 1994;266(5 Pt 1):E683–9.Google Scholar
  118. 118.
    Chan O, Sherwin R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol Metab TEM. 2013;24(12):616–24.PubMedCrossRefGoogle Scholar
  119. 119.
    Donovan CM, Watts AG. Peripheral and central glucose sensing in hypoglycemic detection. Physiol (Bethesda, MD). 2014;29(5):314–24.Google Scholar
  120. 120.
    Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol (Bethesda, MD 1985). 2005;98(1):160–7.CrossRefGoogle Scholar
  121. 121.
    van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536(Pt 1):295–304.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Justice TD, Hammer GL, Davey RJ, Paramalingam N, Guelfi KJ, Lewis L, et al. Effect of antecedent moderate-intensity exercise on the glycemia-increasing effect of a 30-sec maximal sprint: a sex comparison.Physiol Rep. 2015;3(5):1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Marliss EB, Simantirakis E, Miles PD, Hunt R, Gougeon R, Purdon C, et al. Glucose turnover and its regulation during intense exercise and recovery in normal male subjects. Clin Investig Med Med Clin Exp. 1992;15(5):406–19.Google Scholar
  124. 124.
    Watt MJ, Howlett KF, Febbraio MA, Spriet LL, Hargreaves M. Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. J Physiol. 2001;534(Pt 1):269–78.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Marliss EB, Vranic M. Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes. Diabetes. 2002;51(Suppl 1):S271–83.PubMedCrossRefGoogle Scholar
  126. 126.
    Sigal RJ, Fisher S, Halter JB, Vranic M, Marliss EB. The roles of catecholamines in glucoregulation in intense exercise as defined by the islet cell clamp technique. Diabetes. 1996;45(2):148–56.CrossRefGoogle Scholar
  127. 127.
    Mallad A, Hinshaw L, Schiavon M, Dalla Man C, Dadlani V, Basu R, et al. Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach. Am J Physiol Endocrinol Metab. 2015;308(12):E1106–15.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    McAuley SA, Horsburgh JC, Ward GM, La Gerche A, Gooley JL, Jenkins AJ, et al. Insulin pump basal adjustment for exercise in type 1 diabetes: a randomised crossover study. Diabetologia. 2016;59(8):1636–44.PubMedCrossRefGoogle Scholar
  129. 129.
    Rönnemaa T, Koivisto VA. Combined effect of exercise and ambient temperature on insulin absorption and postprandial glycemia in type I patients. Diabetes Care. 1988;11(10):769–73.PubMedCrossRefGoogle Scholar
  130. 130.
    Camacho RC, Galassetti P, Davis SN, Wasserman DH. Glucoregulation during and after exercise in health and insulin-dependent diabetes. Exerc Sport Sci Rev. 2005;33(1):17–23.PubMedGoogle Scholar
  131. 131.
    Frank S, Jbaily A, Hinshaw L, Basu R, Basu A, Szeri AJ. Modeling the acute effects of exercise on insulin kinetics in type 1 diabetes. J Pharmacokinet Pharmacodyn. 2018;45(6):829–45.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Wasserman DH. Four grams of glucose. Am J Physiol Endocrinol Metab. 2009;296(1):E11–21.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Saltiel AR. Insulin signaling in the control of glucose and lipid homeostasis. Handb Exp Pharmacol. 2016;233:51–71.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Bogardus C, Thuillez P, Ravussin E, Vasquez B, Narimiga M, Azhar S. Effect of muscle glycogen depletion on in vivo insulin action in man. J Clin Invest. 1983;72(5):1605–10.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Cartee GD. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise. Am J Physiol Endocrinol Metab. 2015;309(12):E949–59.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Wagenmakers AJM, Strauss JA, Shepherd SO, Keske MA, Cocks M. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing. J Physiol. 2016;594(8):2207–22.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Wagenmakers AJM, van Riel NAW, Frenneaux MP, Stewart PM. Integration of the metabolic and cardiovascular effects of exercise. Essays Biochem. 2006;42:193–210.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Gomez AM, Gomez C, Aschner P, Veloza A, Muñoz O, Rubio C, et al. Effects of performing morning versus afternoon exercise on glycemic control and hypoglycemia frequency in type 1 diabetes patients on sensor-augmented insulin pump therapy. J Diabetes Sci Technol. 2015;9(3):619–24.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Iscoe KE, Campbell JE, Jamnik V, Perkins BA, Riddell MC. Efficacy of continuous real-time blood glucose monitoring during and after prolonged high-intensity cycling exercise: spinning with a continuous glucose monitoring system. Diabetes Technol Ther. 2006;8(6):627–35.PubMedCrossRefGoogle Scholar
  140. 140.
    Maran A, Pavan P, Bonsembiante B, Brugin E, Ermolao A, Avogaro A, et al. Continuous glucose monitoring reveals delayed nocturnal hypoglycemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes. Diabetes Technol Ther. 2010;12(10):763–8.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Richter EA, Ploug T, Galbo H. Increased muscle glucose uptake after exercise. No need for insulin during exercise. Diabetes. 1985;34(10):1041–8.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol. 2017;13(3):133–48.PubMedCrossRefGoogle Scholar
  143. 143.
    Berger M, Berchtold P, Cüppers HJ, Drost H, Kley HK, Müller WA, et al. Metabolic and hormonal effects of muscular exercise in juvenile type diabetics. Diabetologia. 1977;13(4):355–65.PubMedCrossRefGoogle Scholar
  144. 144.
    Bussau VA, Ferreira LD, Jones TW, Fournier PA. A 10-s sprint performed prior to moderate-intensity exercise prevents early post-exercise fall in glycaemia in individuals with type 1 diabetes. Diabetologia. 2007;50(9):1815–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Bussau VA, Ferreira LD, Jones TW, Fournier PA. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care. 2006;29(3):601–6.PubMedCrossRefGoogle Scholar
  146. 146.
    Davey RJ, Bussau VA, Paramalingam N, Ferreira LD, Lim EM, Davis EA, et al. A 10-s sprint performed after moderate-intensity exercise neither increases nor decreases the glucose requirement to prevent late-onset hypoglycemia in individuals with type 1 diabetes. Diabetes Care. 2013;36(12):4163–5.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Fahey AJ, Paramalingam N, Davey RJ, Davis EA, Jones TW, Fournier PA. The effect of a short sprint on postexercise whole-body glucose production and utilization rates in individuals with type 1 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(11):4193–200.PubMedCrossRefGoogle Scholar
  148. 148.
    Thompson WR. Worldwide survey of fitness trends for 2018: the CREP edition. ACSMs Health Fit J. 2017;21(6):10.CrossRefGoogle Scholar
  149. 149.
    Tan R, Nederveen JP, Gillen JB, Joanisse S, Parise G, Tarnopolsky MA, et al. Skeletal muscle fiber-type-specific changes in markers of capillary and mitochondrial content after low-volume interval training in overweight women. Physiol Rep. 2018;6(5):1–8.PubMedCentralCrossRefPubMedGoogle Scholar
  150. 150.
    Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe A, Barker TA, et al. Sprint interval and moderate-intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men. J Physiol. 2016;594(8):2307–21.PubMedCrossRefGoogle Scholar
  151. 151.
    Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS One. 2016;11(4):e0154075.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Iscoe KE, Riddell MC. Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with type 1 diabetes mellitus. Diabet Med J Br Diabet Assoc. 2011;28(7):824–32.CrossRefGoogle Scholar
  153. 153.
    Moser O, Tschakert G, Mueller A, Groeschl W, Pieber TR, Obermayer-Pietsch B, et al. Effects of high-intensity interval exercise versus moderate continuous exercise on glucose homeostasis and hormone response in patients with type 1 diabetes mellitus using novel ultra-long-acting insulin. PLoS One. 2015;10(8):e0136489.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Guelfi KJ, Jones TW, Fournier PA. Intermittent high-intensity exercise does not increase the risk of early postexercise hypoglycemia in individuals with type 1 diabetes. Diabetes Care. 2005;28(2):416–8.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Scott SN, Cocks M, Andrews RC, Narendran P, Purewal TS, Cuthbertson DJ, et al. Fasted high-intensity interval and moderate-intensity exercise do not lead to detrimental 24-hour blood glucose profiles. J Clin Endocrinol Metab. 2019;104(1):111–7.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med Auckl NZ. 2005;35(4):339–61.CrossRefGoogle Scholar
  157. 157.
    Yardley JE, Kenny GP, Perkins BA, Riddell MC, Balaa N, Malcolm J, et al. Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. Diabetes Care. 2013;36(3):537–42.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Yardley JE, Kenny GP, Perkins BA, Riddell MC, Malcolm J, Boulay P, et al. Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care. 2012;35(4):669–75.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Turner D, Luzio S, Gray BJ, Bain SC, Hanley S, Richards A, et al. Algorithm that delivers an individualized rapid-acting insulin dose after morning resistance exercise counters post-exercise hyperglycaemia in people with type 1 diabetes. Diabet Med J Br Diabet Assoc. 2016;33(4):506–10.CrossRefGoogle Scholar
  160. 160.
    Turner D, Luzio S, Gray BJ, Dunseath G, Rees ED, Kilduff LP, et al. Impact of single and multiple sets of resistance exercise in type 1 diabetes. Scand J Med Sci Sports. 2015;25(1):e99–109.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Smilios I, Pilianidis T, Karamouzis M, Tokmakidis SP. Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc. 2003;35(4):644–54.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Yardley JE, Brockman NK, Bracken RM. Could Age, Sex and Physical Fitness Affect Blood Glucose Responses to Exercise in Type 1 Diabetes? Front Endocrinol [Internet]. 2018 [cited 2018 Nov 29];9. Available from: https://www.frontiersin.org/articles/10.3389/fendo.2018.00674/full.
  163. 163.
    Gradel AKJ, Porsgaard T, Lykkesfeldt J, Seested T, Gram-Nielsen S, Kristensen NR, et al. Factors affecting the absorption of subcutaneously administered insulin: effect on variability. J Diabetes Res. 2018;2018:1205121.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Frid A, Ostman J, Linde B. Hypoglycemia risk during exercise after intramuscular injection of insulin in thigh in IDDM. Diabetes Care. 1990;13(5):473–7.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Hirsch L, Byron K, Gibney M. Intramuscular risk at insulin injection sites–measurement of the distance from skin to muscle and rationale for shorter-length needles for subcutaneous insulin therapy. Diabetes Technol Ther. 2014;16(12):867–73.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Hildebrandt P. Subcutaneous absorption of insulin in insulin-dependent diabetic patients. Influence of species, physico-chemical properties of insulin and physiological factors. Dan Med Bull. 1991;38(4):337–46.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Sindelka G, Heinemann L, Berger M, Frenck W, Chantelau E. Effect of insulin concentration, subcutaneous fat thickness and skin temperature on subcutaneous insulin absorption in healthy subjects. Diabetologia. 1994;37(4):377–80.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Al Khalifah RA, Suppère C, Haidar A, Rabasa-Lhoret R, Ladouceur M, Legault L. Association of aerobic fitness level with exercise-induced hypoglycaemia in type 1 diabetes. Diabet Med J Br Diabet Assoc. 2016;33(12):1686–90.CrossRefGoogle Scholar
  169. 169.
    Bao S, Briscoe VJ, Tate DB, Davis SN. Effects of differing antecedent increases of plasma cortisol on counterregulatory responses during subsequent exercise in type 1 diabetes. Diabetes. 2009;58(9):2100–8.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Galassetti P, Tate D, Neill RA, Morrey S, Wasserman DH, Davis SN. Effect of sex on counterregulatory responses to exercise after antecedent hypoglycemia in type 1 diabetes. Am J Physiol Endocrinol Metab. 2004;287(1):E16–24.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Galassetti P, Tate D, Neill RA, Richardson A, Leu S-Y, Davis SN. Effect of differing antecedent hypoglycemia on counterregulatory responses to exercise in type 1 diabetes. Am J Physiol Endocrinol Metab. 2006;290(6):E1109–17.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Brockman NK, Yardley JE. Sex-related differences in fuel utilization and hormonal response to exercise: implications for individuals with type 1 diabetes. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2018;43(6):541–52.CrossRefGoogle Scholar
  173. 173.
    Riddell MC, Zaharieva DP, Tansey M, Tsalikian E, Admon G, Li Z, et al. Individual glucose responses to prolonged moderate intensity aerobic exercise in adolescents with type 1 diabetes: the higher they start, the harder they fall. Pediatr Diabetes. 2018;20(1):99–106.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Turner D, Gray BJ, Luzio S, Dunseath G, Bain SC, Hanley S, et al. Similar magnitude of post-exercise hyperglycemia despite manipulating resistance exercise intensity in type 1 diabetes individuals. Scand J Med Sci Sports. 2016;26(4):404–12.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Eshghi SRT, Yardley JE. Acute effects of morning versus afternoon resistance exercise on Glycemia in type 1 diabetes. Can J Diabetes. 2017;41(5):S64.CrossRefGoogle Scholar
  176. 176.
    Ruegemer JJ, Squires RW, Marsh HM, Haymond MW, Cryer PE, Rizza RA, et al. Differences between prebreakfast and late afternoon glycemic responses to exercise in IDDM patients. Diabetes Care. 1990;13(2):104–10.PubMedCrossRefGoogle Scholar
  177. 177.
    Scott SN, Cocks M, Andrews RC, Narendran P, Purewal TS, Cuthbertson DJ, et al. Fasted high-intensity interval and moderate-intensity exercise do not lead to detrimental 24-hour blood glucose profiles. J Clin Endocrinol Metab. 2018;104(1):111–7.CrossRefGoogle Scholar
  178. 178.
    Campbell MD, West DJ, Bain SC, Kingsley MIC, Foley P, Kilduff L, et al. Simulated games activity vs continuous running exercise: a novel comparison of the glycemic and metabolic responses in T1DM patients. Scand J Med Sci Sports. 2015;25(2):216–22.PubMedCrossRefGoogle Scholar
  179. 179.
    Yardley JE, Sigal RJ, Kenny GP, Riddell MC, Lovblom LE, Perkins BA. Point accuracy of interstitial continuous glucose monitoring during exercise in type 1 diabetes. Diabetes Technol Ther. 2013;15(1):46–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Zaharieva D, Yavelberg L, Jamnik V, Cinar A, Turksoy K, Riddell MC. The effects of basal insulin suspension at the start of exercise on blood glucose levels during continuous versus circuit-based exercise in individuals with type 1 diabetes on continuous subcutaneous insulin infusion. Diabetes Technol Ther. 2017;19(6):370–8.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Schmidt MI, Hadji-Georgopoulos A, Rendell M, Margolis S, Kowarski A. The dawn phenomenon, an early morning glucose rise: implications for diabetic intraday blood glucose variation. Diabetes Care. 1981;4(6):579–85.PubMedCrossRefGoogle Scholar
  182. 182.
    Campbell PJ, Bolli GB, Cryer PE, Gerich JE. Sequence of events during development of the dawn phenomenon in insulin-dependent diabetes mellitus. Metabolism. 1985;34(12):1100–4.PubMedCrossRefGoogle Scholar
  183. 183.
    Edge JA, Matthews DR, Dunger DB. The dawn phenomenon is related to overnight growth hormone release in adolescent diabetics. Clin Endocrinol. 1990;33(6):729–37.CrossRefGoogle Scholar
  184. 184.
    Davidson MB, Harris MD, Ziel FH, Rosenberg CS. Suppression of sleep-induced growth hormone secretion by anticholinergic agent abolishes dawn phenomenon. Diabetes. 1988;37(2):166–71.PubMedCrossRefGoogle Scholar
  185. 185.
    Yardley JE, Sigal RJ, Riddell MC, Perkins BA, Kenny GP. Performing resistance exercise before versus after aerobic exercise influences growth hormone secretion in type 1 diabetes. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2014;39(2):262–5.CrossRefGoogle Scholar
  186. 186.
    Goto K, Higashiyama M, Ishii N, Takamatsu K. Prior endurance exercise attenuates growth hormone response to subsequent resistance exercise. Eur J Appl Physiol. 2005;94(3):333–8.PubMedCrossRefGoogle Scholar
  187. 187.
    Abraham MB, Davey RJ, Cooper MN, Paramalingam N, O’Grady MJ, Ly TT, et al. Reproducibility of the plasma glucose response to moderate-intensity exercise in adolescents with type 1 diabetes. Diabet Med J Br Diabet Assoc. 2017;34(9):1291–5.CrossRefGoogle Scholar
  188. 188.
    Ratjen I, Weber KS, Roden M, Herrmann M-E, Müssig K. Type 1 diabetes mellitus and exercise in competitive athletes. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2015;123(7):419–22.Google Scholar
  189. 189.
    Komatsu WR, Gabbay MAL, Castro ML, Saraiva GL, Chacra AR, de Barros Neto TL, et al. Aerobic exercise capacity in normal adolescents and those with type 1 diabetes mellitus. Pediatr Diabetes. 2005;6(3):145–9.PubMedCrossRefGoogle Scholar
  190. 190.
    Baraldi E, Monciotti C, Filippone M, Santuz P, Magagnin G, Zanconato S, et al. Gas exchange during exercise in diabetic children. Pediatr Pulmonol. 1992;13(3):155–60.PubMedCrossRefGoogle Scholar
  191. 191.
    Gusso S, Hofman P, Lalande S, Cutfield W, Robinson E, Baldi JC. Impaired stroke volume and aerobic capacity in female adolescents with type 1 and type 2 diabetes mellitus. Diabetologia. 2008;51(7):1317–20.PubMedCrossRefGoogle Scholar
  192. 192.
    Huttunen NP, Käär ML, Knip M, Mustonen A, Puukka R, Akerblom HK. Physical fitness of children and adolescents with insulin-dependent diabetes mellitus. Ann Clin Res. 1984;16(1):1–5.PubMedGoogle Scholar
  193. 193.
    Poortmans JR, Saerens P, Edelman R, Vertongen F, Dorchy H. Influence of the degree of metabolic control on physical fitness in type I diabetic adolescents. Int J Sports Med. 1986;7(4):232–5.PubMedCrossRefGoogle Scholar
  194. 194.
    Larsen S, Brynjolf I, Birch K, Munck O, Sestoft L. The effect of continuous subcutaneous insulin infusion on cardiac performance during exercise in insulin-dependent diabetics. Scand J Clin Lab Invest. 1984;44(8):683–91.PubMedCrossRefGoogle Scholar
  195. 195.
    Crowther GJ, Milstein JM, Jubrias SA, Kushmerick MJ, Gronka RK, Conley KE. Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes. Am J Physiol Endocrinol Metab. 2003;284(4):E655–62.PubMedCrossRefGoogle Scholar
  196. 196.
    Francescato MP, Geat M, Fusi S, Stupar G, Noacco C, Cattin L. Carbohydrate requirement and insulin concentration during moderate exercise in type 1 diabetic patients. Metabolism. 2004;53(9):1126–30.PubMedCrossRefGoogle Scholar
  197. 197.
    Nugent AM, Steele IC, al-Modaris F, Vallely S, Moore A, Campbell NP, et al. Exercise responses in patients with IDDM. Diabetes Care. 1997;20(12):1814–21.PubMedCrossRefGoogle Scholar
  198. 198.
    Veves A, Saouaf R, Donaghue VM, Mullooly CA, Kistler JA, Giurini JM, et al. Aerobic exercise capacity remains normal despite impaired endothelial function in the micro- and macrocirculation of physically active IDDM patients. Diabetes. 1997;46(11):1846–52.PubMedCrossRefGoogle Scholar
  199. 199.
    Galassetti P, Riddell MC. Exercise and type 1 diabetes (T1DM). Compr Physiol. 2013;3(3):1309–36.PubMedGoogle Scholar
  200. 200.
    Mozzillo E, Zito E, Maffeis C, De Nitto E, Maltoni G, Marigliano M, et al. Unhealthy lifestyle habits and diabetes-specific health-related quality of life in youths with type 1 diabetes. Acta Diabetol. 2017;54(12):1073–80.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    de Lima VA, Mascarenhas LPG, Decimo JP, de Souza WC, Monteiro ALS, Lahart I, et al. Physical activity levels of adolescents with type 1 diabetes physical activity in T1D. Pediatr Exerc Sci. 2017;29(2):213–9.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Mohammed J, Deda L, Clarson CL, Stein RI, Cuerden MS, Mahmud FH. Assessment of habitual physical activity in adolescents with type 1 diabetes. Can J Diabetes. 2014;38(4):250–5.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Michaud I, Henderson M, Legault L, Mathieu M-E. Physical activity and sedentary behavior levels in children and adolescents with type 1 diabetes using insulin pump or injection therapy – the importance of parental activity profile. J Diabetes Complicat. 2017;31(2):381–6.PubMedCrossRefGoogle Scholar
  204. 204.
    Andersen H. Muscular endurance in long-term IDDM patients. Diabetes Care. 1998;21(4):604–9.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Andersen H, Stålberg E, Gjerstad MD, Jakobsen J. Association of muscle strength and electrophysiological measures of reinnervation in diabetic neuropathy. Muscle Nerve. 1998;21(12):1647–54.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Andersen H, Gadeberg PC, Brock B, Jakobsen J. Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia. 1997;40(9):1062–9.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Fritzsche K, Blüher M, Schering S, Buchwalow IB, Kern M, Linke A, et al. Metabolic profile and nitric oxide synthase expression of skeletal muscle fibers are altered in patients with type 1 diabetes. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2008;116(10):606–13.CrossRefGoogle Scholar
  208. 208.
    Jenni S, Oetliker C, Allemann S, Ith M, Tappy L, Wuerth S, et al. Fuel metabolism during exercise in euglycaemia and hyperglycaemia in patients with type 1 diabetes mellitus–a prospective single-blinded randomised crossover trial. Diabetologia. 2008;51(8):1457–65.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Magee MF, Bhatt BA. Management of decompensated diabetes. Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome. Crit Care Clin. 2001;17(1):75–106.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Jimenez CC, Corcoran MH, Crawley JT, Guyton Hornsby W, Peer KS, Philbin RD, et al. National athletic trainers’ association position statement: management of the athlete with type 1 diabetes mellitus. J Athl Train. 2007;42(4):536–45.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Heller SR, Cryer PE. Reduced neuroendocrine and symptomatic responses to subsequent hypoglycemia after 1 episode of hypoglycemia in nondiabetic humans. Diabetes. 1991;40(2):223–6.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Cryer PE. Hypoglycemia-induced autonomic failure in insulin-dependent diabetes mellitus. Proc Assoc Am Physicians. 1995;107(1):67–70.PubMedGoogle Scholar
  213. 213.
    Dagogo-Jack SE, Craft S, Cryer PE. Hypoglycemia-associated autonomic failure in insulin-dependent diabetes mellitus. Recent antecedent hypoglycemia reduces autonomic responses to, symptoms of, and defense against subsequent hypoglycemia. J Clin Invest. 1993;91(3):819–28.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Taborsky GJ, Ahrén B, Havel PJ. Autonomic mediation of glucagon secretion during hypoglycemia: implications for impaired alpha-cell responses in type 1 diabetes. Diabetes. 1998;47(7):995–1005.PubMedCrossRefGoogle Scholar
  215. 215.
    Haymond MW, Schreiner B. Mini-dose glucagon rescue for hypoglycemia in children with type 1 diabetes. Diabetes Care. 2001;24(4):643–5.PubMedCrossRefGoogle Scholar
  216. 216.
    Rickels MR, DuBose SN, Toschi E, Beck RW, Verdejo AS, Wolpert H, et al. Mini-dose glucagon as a novel approach to prevent exercise-induced hypoglycemia in type 1 diabetes. Diabetes Care. 2018;41(9):1909–16.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Haymond MW, DuBose SN, Rickels MR, Wolpert H, Shah VN, Sherr JL, et al. Efficacy and safety of mini-dose glucagon for treatment of nonsevere hypoglycemia in adults with type 1 diabetes. J Clin Endocrinol Metab. 2017;102(8):2994–3001.PubMedCrossRefGoogle Scholar
  218. 218.
    Haymond MW, Redondo MJ, McKay S, Cummins MJ, Newswanger B, Kinzell J, et al. Nonaqueous, mini-dose glucagon for treatment of mild hypoglycemia in adults with type 1 diabetes: a dose-seeking study. Diabetes Care. 2016;39(3):465–8; dc152124.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    El-Khatib FH, Balliro C, Hillard MA, Magyar KL, Ekhlaspour L, Sinha M, et al. Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial. Lancet Lond Engl. 2017;389(10067):369–80.CrossRefGoogle Scholar
  220. 220.
    Trevitt S, Simpson S, Wood A. Artificial pancreas device systems for the closed-loop control of type 1 diabetes: what systems are in development? J Diabetes Sci Technol. 2016;10(3):714–23.PubMedCrossRefGoogle Scholar
  221. 221.
    Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey TS, et al. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017;19(3):155–63.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Hovorka R. Closed-loop insulin delivery: from bench to clinical practice. Nat Rev Endocrinol. 2011;7(7):385–95.PubMedCrossRefGoogle Scholar
  223. 223.
    Choudhary P, Olsen BS, Conget I, Welsh JB, Vorrink L, Shin JJ. Hypoglycemia prevention and user acceptance of an insulin pump system with predictive low glucose management. Diabetes Technol Ther. 2016;18(5):288–91.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Klupa T, Hohendorff J, Benbenek-Klupa T, Matejko B, Malecki MT. Insulin pump settings and glucose patterns during a 1008-km non-stop bicycle race in a patient with type 1 diabetes mellitus. Acta Diabetol [Internet]. 2018 Nov 15 [cited 2018 Nov 22]; Available from:  https://doi.org/10.1007/s00592-018-1254-4.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Wood MA, Shulman DI, Forlenza GP, Bode BW, Pinhas-Hamiel O, Buckingham BA, et al. In-clinic evaluation of the MiniMed 670G system ‘suspend before low’ feature in children with type 1 diabetes. Diabetes Technol Ther. 2018;20(11):731–7.PubMedCrossRefGoogle Scholar
  226. 226.
    Patel NS, Van Name MA, Cengiz E, Carria LR, Tichy EM, Weyman K, et al. Mitigating reductions in glucose during exercise on closed-loop insulin delivery: the ex-snacks study. Diabetes Technol Ther. 2016;18(12):794–9.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Zaharieva DP, Riddell MC, Henske J. The accuracy of continuous glucose monitoring and flash glucose monitoring during aerobic exercise in type 1 diabetes. J Diabetes Sci Technol. 2018;13(1):140–1. 1932296818804550.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Breton MD, Cherñavvsky DR, Forlenza GP, DeBoer MD, Robic J, Wadwa RP, et al. Closed-loop control during intense prolonged outdoor exercise in adolescents with type 1 diabetes: the artificial pancreas ski study. Diabetes Care. 2017;40(12):1644–50.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Forlenza GP, Cameron FM, Ly TT, Lam D, Howsmon DP, Baysal N, et al. Fully closed-loop multiple model probabilistic predictive controller artificial pancreas performance in adolescents and adults in a supervised hotel setting. Diabetes Technol Ther. 2018;20(5):335–43.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Hajizadeh I, Rashid M, Turksoy K, Samadi S, Feng J, Sevil M, et al. Incorporating unannounced meals and exercise in adaptive learning of personalized models for multivariable artificial pancreas systems. J Diabetes Sci Technol. 2018;12(5):953–66.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Bakhtiani PA, Zhao LM, El Youssef J, Castle JR, Ward WK. A review of artificial pancreas technologies with an emphasis on bi-hormonal therapy. Diabetes Obes Metab. 2013;15(12):1065–70.PubMedCrossRefGoogle Scholar
  232. 232.
    Jackson MA, Caputo N, Castle JR, David LL, Roberts CT, Ward WK. Stable liquid glucagon formulations for rescue treatment and bi-hormonal closed-loop pancreas. Curr Diab Rep. 2012;12(6):705–10.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Castle JR, El Youssef J, Wilson LM, Reddy R, Resalat N, Branigan D, et al. Randomized outpatient trial of single- and dual-hormone closed-loop systems that adapt to exercise using wearable sensors. Diabetes Care. 2018;41(7):1471–7.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Jacobs PG, El Youssef J, Reddy R, Resalat N, Branigan D, Condon J, et al. Randomized trial of a dual-hormone artificial pancreas with dosing adjustment during exercise compared with no adjustment and sensor-augmented pump therapy. Diabetes Obes Metab. 2016;18(11):1110–9.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Taleb N, Emami A, Suppere C, Messier V, Legault L, Ladouceur M, et al. Efficacy of single-hormone and dual-hormone artificial pancreas during continuous and interval exercise in adult patients with type 1 diabetes: randomised controlled crossover trial. Diabetologia. 2016;59(12):2561–71.PubMedCrossRefGoogle Scholar
  236. 236.
    Campaigne BN, Wallberg-Henriksson H, Gunnarsson R. Glucose and insulin responses in relation to insulin dose and caloric intake 12 h after acute physical exercise in men with IDDM. Diabetes Care. 1987;10(6):716–21.PubMedCrossRefGoogle Scholar
  237. 237.
    Franc S, Daoudi A, Pochat A, Petit M-H, Randazzo C, Petit C, et al. Insulin-based strategies to prevent hypoglycaemia during and after exercise in adult patients with type 1 diabetes on pump therapy: the DIABRASPORT randomized study. Diabetes Obes Metab. 2015;17(12):1150–7.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Otto-Buczkowska E, Jainta N. Pharmacological treatment in diabetes mellitus type 1 – insulin and what else? Int J Endocrinol Metab. 2018;16(1):e13008.PubMedGoogle Scholar
  239. 239.
    Richardson T, Weiss M, Thomas P, Kerr D. Day after the night before: influence of evening alcohol on risk of hypoglycemia in patients with type 1 diabetes. Diabetes Care. 2005;28(7):1801–2.PubMedCrossRefGoogle Scholar
  240. 240.
    Al-Qaissi A, Papageorgiou M, Javed Z, Heise T, Rigby AS, Garrett AT, et al. Environmental effects of ambient temperature and relative humidity on insulin pharmacodynamics in adults with type 1 diabetes mellitus. Diabetes Obes Metab. 2019;21(3):569–74.PubMedCrossRefGoogle Scholar
  241. 241.
    Ertl AC, Davis SN. Evidence for a vicious cycle of exercise and hypoglycemia in type 1 diabetes mellitus. Diabetes Metab Res Rev. 2004;20(2):124–30.PubMedCrossRefGoogle Scholar
  242. 242.
    Mallad A, Hinshaw L, Dalla Man C, Cobelli C, Basu R, Lingineni R, et al. Nocturnal glucose metabolism in type 1 diabetes: a study comparing single versus dual tracer approaches. Diabetes Technol Ther. 2015;17(8):587–95.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Trout KK, Rickels MR, Schutta MH, Petrova M, Freeman EW, Tkacs NC, et al. Menstrual cycle effects on insulin sensitivity in women with type 1 diabetes: a pilot study. Diabetes Technol Ther. 2007;9(2):176–82.PubMedCrossRefGoogle Scholar
  244. 244.
    Hilliard ME, Yi-Frazier JP, Hessler D, Butler AM, Anderson BJ, Jaser S. Stress and A1c among people with diabetes across the lifespan. Curr Diab Rep. 2016;16(8):67.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sam N. Scott
    • 1
  • Michael C. Riddell
    • 1
    Email author
  • Jane E. Yardley
    • 2
  1. 1.York University, School of Kinesiology and Health SciencesTorontoCanada
  2. 2.University of Alberta, Augustana FacultyCamroseCanada

Personalised recommendations