Advertisement

Exercise in Older Adults: The Effect of Age on Exercise Endocrinology

  • Jennifer L. CopelandEmail author
Chapter
  • 118 Downloads
Part of the Contemporary Endocrinology book series (COE)

Abstract

It is indisputable that exercise is beneficial to health and quality of life as we age, and one of the proposed mechanisms by which exercise promotes successful aging is through its impact on endocrine function. Exercise alters circulating hormone concentrations as well as the expression of locally produced hormones and hormone receptors, and the balance of evidence suggests these responses still occur in elderly individuals if a sufficient dose of activity is achieved. In light of the current rate of population aging, there is considerable incentive to understand the relationships between exercise, endocrine function, and successful aging.

Keywords

Physical activity Bone mineral density Growth hormone Resistance training Resistance exercise 

References

  1. 1.
    United Nations. World population ageing 2007. 2007.; Retrieved from http://www.un.org/esa/population/publications/WPA2007/wpp2007.htm.
  2. 2.
    Rowe JW, Kahn RL. Human older adults: usual and successful. Science. 1987;237:143–9.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kamel HK, Mooradian AD, Mir T. Biological theories of aging. In: Morley JE, van den Berg L, editors. Endocrinology of aging. Totowa, NJ: Human Press; 2000. p. 1–9.Google Scholar
  4. 4.
    Morley JE. Tithonusism. Is it reversible? In: Morley JE, van den Berg L, editors. Endocrinology of aging. Totowa, NJ: Humana Press; 2000. p. 11–21.CrossRefGoogle Scholar
  5. 5.
    Harman D. Older adults: overview. Ann N Y Acad Sci. 2001;928:1–21.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Davis PJ, Davis FB. Age related changes in endocrine function. In: Cape RDT, Coe RM, editors. Fundamentals of geriatric medicine. New York, NY: Raven; 1983.Google Scholar
  7. 7.
    Meneilly G, Tessier D. Diabetes in the elderly. In: Morley JE, van den Berg L, editors. Endocrinology of aging. Totowa, NJ: Humana Press; 2000. p. 181–203.CrossRefGoogle Scholar
  8. 8.
    Samuels MH, Pekary AE, Hershman JM. Hypothalamic – pituitary-thyroid axis in aging. In: Morley JE, van den Berg L, editors. Endocrinology of aging. Totowa, NJ: Human Press; 2000. p. 41–61.CrossRefGoogle Scholar
  9. 9.
    Lamberts SW, van den Beld AW, van der Lely AJ. The endocrinology of aging. Science. 1997;278:419–24.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Epelbaum J. Neuroendocrinology and aging. J Neuroendocrinol. 2008;20:808–11.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Burger HG, Dudley E, Mamers P, Robertson D, Groome N, Dennerstein L. The ageing female reproductive axis I. Novartis Found Symp. 2002;242:161–7.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Longcope C. Hormone dynamics at the menopause. Ann N Y Acad Sci. 1990;592:21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Cauley JA, Gutai JP, Kuller LH, LeDonne D, Powell JG. The epidemiology of serum sex hormones in postmenopausal women. Am J Epidemiol. 1989;129:1120–31.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    van Zonneveld P, Scheffer GJ, Broekmans FJ, te Velde ER. Hormones and reproductive aging. Maturitas. 2001;38:83–91.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hall JE, Gill S. Neuroendocrine aspects of aging in women. Neuroendocrinology. 2001;30:631–46.Google Scholar
  16. 16.
    Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 2002;87:589–98.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Anawalt BD, Merriam GR. Neuroendocrine aging in men. Neuroendocrinology. 2001;30:647–69.Google Scholar
  18. 18.
    Yialamas M, Hayes F. Androgens and the ageing male and female. Best Pract Res Clin Endocrinal Metab. 2003;17:223–36.CrossRefGoogle Scholar
  19. 19.
    Ferrini RL, Barrett-Connor E. Sex hormones and age: a cross-sectional study of testosterone and estradiol and their bioavailable fractions in community-dwelling men. Am J Epidemiol. 1998;147(8):750–4.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Slowinska-Lisowska M, Jozkow P, Medras M. Associations between physical activity and the androgenic/estrogenic status of men. Physiol Res. 2010;59(5):757–63.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Muller M, den Tonkelaar I, Thijssen JHH, Grobbee DE, van der Schouw YT. Endogenous sex hormones in men aged 40-80 years. Eur J Endocrinol. 2003;149(6):583–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Davison SL, Bell R, Donath S, Montalto JG, Davis SR. Androgen levels in adults females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005;90:3847–53.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Judd HL, Yen SS. Serum androstenedione and testosterone levels during the menstrual cycle. J Clin Endocrinol Metab. 1973;36:475–81.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Burger HG, Dudley EC, Cui J, Dennerstein L, Hopper JL. A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate, and sex hormone-binding globulin levels through the menopause transition. J Clin Endocrinol Metab. 2000;85:2832–8.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Enea C, Boisseau N, Fargeas-Gluck MA, Diaz V, Dugue B. Circulating androgens in women: exercise-induced changes. Sports Med. 2011;41:1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Rinaudo P, Strauss JF III. Endocrine function of the postmenopausal ovary. Endocrinol Metab Clin N Am. 2004;33:661–74.CrossRefGoogle Scholar
  27. 27.
    Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev. 1999;107:123–36.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Morley JE, Kaiser FE, Sih R, Hajjar R, Perry HM III. Testosterone and frailty. Clin Geriatr Med. 1997;13:685–95.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Nankin HR, Calkins JH. Decreased bioavailable testosterone in aging normal and impotent men. J Clin Endocrinol Metab. 1986;63:1418–20.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Vermeulen A. Clinical review 24: androgens in the aging male. J Clin Endocrinol Metab. 1991;9:221–4.CrossRefGoogle Scholar
  31. 31.
    Bancroft J, Cawood EH. Androgens and the menopause: a study of 40-60-year-old women. Clin Endocrinol. 1996;45:577–87.CrossRefGoogle Scholar
  32. 32.
    Rannevik G, Jeppsson S, Johnell O, Bjerre B, Laurell-Borulf Y, Svanberg L. A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas. 1995;21:103–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex difference in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab. 1984;59:551–5.CrossRefGoogle Scholar
  34. 34.
    Gordon CM, Glowacki J, LeBoff MS. DHEA and the skeleton (through the ages). Endocrine. 1999;11:1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Nawata H, Yanase T, Goto K, Okaba T, Nomura M, Ashida K, Watanabe T. Adrenopause. Horm Res. 2004;62:110–4.PubMedGoogle Scholar
  36. 36.
    Parker CR Jr, Mixon RL, Brissie RM, Grizzle WE. Aging alters zonation in the adrenal cortex of men. J Clin Endocrinol Metab. 1997;82:3898–901.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Iranmanesh A, Lizarralde G, Veldhuis JD. Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth-hormone (Gh) secretory bursts and the half-life of endogenous Gh in healthy men. J Clin Endocrinol Metab. 1991;73:1081–8.CrossRefGoogle Scholar
  38. 38.
    Rudman D, Kutner MH, Rogers CM, Lubin MF, Fleming GA, Bain RP. Impaired growth-hormone secretion in the adult-population – relation to age and adiposity. J Clin Invest. 1981;67:1361–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    van den Berg G, Veldhuis JD, Frolich M, Roelfsema F. An amplitude-specific divergence in the pulsatile mode of growth hormone (GH) secretion underlies the gender difference in mean GH concentrations in men and premenopausal women. J Clin Endocrinol Metab. 1996;81:2460–7.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Veldhuis JD, Roelfsema F, Keenan DM, Pincus S. Gender, age, body mass index, and IGF-I individually and jointly determine distinct GH dynamics: analyses in one hundred healthy adults. J Clin Endocrinol Metab. 2011;96:115–21.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ho KY, Evans WS, Blizzard RM, Veldhuis JD, Merriam GR, Samojlik E, Furlanetto R, Rogol AD, Kaiser DL, Thorner MO. Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of estradiol concentrations. J Clin Endocrinol Metab. 1987;64(1):51–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Veldhuis JD, Evans WS, Bowers CY, Anderson S. Interactive regulation of postmenopausal growth hormone insulin-like growth factor axis by estrogen and growth hormone-releasing peptide-2. Endocrine. 2001;14:45–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Lieman HJ, Adel TE, Forst C, von Hagen S, Santoro N. Effects of aging and estradiol supplementation on GH axis dynamics in women. J Clin Endocrinol Metab. 2001;86:3918–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Sherlock M, Toogood AA. Aging and the growth hormone/insulin like growth factor-I axis. Pituitary. 2007;10:189–203.PubMedCrossRefGoogle Scholar
  45. 45.
    Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DGA, Ghatei MA, Bloom SR. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141:4325–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Rigamonti AE, Pincalli AI, Corra B, Viareong R, Bonanio SM, Galimberti D, Scacchi M, Scarpini E, Cavagnini IF, Muller EE. Plasma ghrelin concentrations in elderly subjects: comparison with anorexic and obese patients. J Endocrinol. 2005;175:R1–5.CrossRefGoogle Scholar
  47. 47.
    Tai K, Visvanathan R, Hammond AJ, Wishart JM, Horowitz M, Chapman IM. Fasting ghrelin is related to skeletal muscle mass in healthy adults. Eur J Nutr. 2009;48:176–83.PubMedCrossRefGoogle Scholar
  48. 48.
    Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34.PubMedGoogle Scholar
  49. 49.
    Mohan S, Baylink DJ. IGF-binding proteins are multifunctional and act via IGF-dependent and –independent mechanisms. J Endocrinol. 2002;175:19–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Goldspink G, Harridge SD. Growth factors and muscle ageing. Exp Gerontol. 2004;39:1433–8.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Frost RA, Lang CH. Regulation of insulin-like growth factor-1 in skeletal muscle and muscle cells. Minerva Endocrinol. 2003;28:53–73.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Parekh N, Robert C, Vadiveloo M, Puvananayagam T, Albu J, Lu-Yao G. Lifestyle, anthropometric, and obesity-related physiologic determinants of insulin-like growth factor-1 in the Third National Health and Nutrition Examination Survey (1988-1994). Ann Epidemiol. 2010;20:182–93.PubMedCrossRefGoogle Scholar
  53. 53.
    Goodman-Gruen D, Barrett-Connor E. Epidemiology of insulin-like growth factor-1 in elderly men and women. The Rancho Bernardo Study. Am J Epidemiol. 1997;145:970–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Lam CSP, Chen M-H, Lacey SM, Yang Q, Sullivan LM, Xantahkis V, Sata R, Smith HM, Peng X, Sawyer DB, Vosan RS. Circulating insulin-like growth factor-1 and its binding protein-3: metabolic and genetic correlates in the community. Arterioscler Thromb Vasc Biol. 2010;30:1479–84.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Morimoto LM, Newcomb PA, White E, Bigler J, Potter JD. Variation in plasma insulin-like growth factor-1 and insulin-like growth factor binding protein-3: personal and lifestyles factors (United States). Cancer Causes Control. 2005;16:917–27.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Aimaretti G, Boschetti M, Corneli G, Gasco V, Valle D, Borsotti M, Rossi A, Barreca A, Fazzuoli L, Ferone D, Ghigo E, Minuto F. Normal age-dependent values of serum insulin growth factor-I: results from a healthy Italian population. J Endocrinol Investig. 2008;31:445–9.CrossRefGoogle Scholar
  57. 57.
    Landin-Wilhelmsen K, Lundberg PA, Lappas G, Wilhelmsen L. Insulin-like growth factor I levels in healthy adults. Horm Res. 2004;62:8–16.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Ruiz-Torres A, Kirzner MSD. Ageing and longevity are related to growth hormone/insulin-like growth factor-1 secretion. Gerontology. 2002;48:401–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lukanova A, Toniolo P, Akhmedkhanov A, Hunt K, Rinaldi S, Zeleniuch-Jacquotte A, Haley NJ, Riboli E, Stattin P, Lundind E, Kaaks R. A cross-sectional study of IGF-I determinants in women. Eur J Cancer Prev. 2001;10:443–52.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Seeman E. Invited review: pathogenesis of osteoporosis. J Appl Physiol. 2003;95:2142–51.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Amin S, Zhang Y, Sawin C, Evans S, Hannan M, Kiel D, Wilson PWF, Felson DT. Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham Study. Ann Intern Med. 2000;133:951–63.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sipila S, Heikkinen E, Cheng S, Suominen H, Saari P, Kovanen V, Alen M, Rantanen T. Endogenous hormones, muscle strength, and risk of fall-related fractures in older women. J Gerontol A Biol Sci Med Sci. 2006;61:92–6.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Snyder PJ. The role of androgens in women. J Clin Endocrinol Metab. 2001;86:1006–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Shealy CN. A review of dehydroepiandrosterone (DHEA). Integr Physiol Behav Sci. 1995;30:308–13.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Watson RR, Huls A, Araghinikuam M, Chung S. Dehydroepiandrosterone and diseases of aging. Drugs Aging. 1996;9:274–91.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Straub RH, Konecna L, Hrach S, Rothe G, Kreutz M, Scholmerich J, Falk W, Lang B. Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab. 1998;83(1):2012–7.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Leowattana W. DHEA(S): the fountain of youth. J Med Assoc Thail. 2001;84 Suppl 2:S605–12.Google Scholar
  68. 68.
    Cappola AR, Bandeen-Roche K, Wand GS, Volpato S, Fried LP. Association of IGF-1 levels with muscle strength and mobility in older women. J Clin Endocrinol Metab. 2001;86:4139–46.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29(5):535–59.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Rosen CJ. Insulin-like growth factor 1 and bone mineral density: experience from animal models and human observational studies. Best Pract Res Clin Endocrinol Metab. 2004;18:423–35.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kamel HK, Maas D, Duthie EH Jr. Role of hormones in the pathogenesis and management of sarcopenia. Drugs Aging. 2002;19:865–77.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Nindl BC, Pierce JR. Insulin-like growth factor I as a biomarker of health, fitness, and training status. Med Sci Sports Exerc. 2010;42:39–49.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Brugts MP, van den Beld AW, Hofland LJ, van der Wansem K, van Koestveld PM, Frystyk J, Lamberts SWJ, Janssen JAMJL. J Clin Endocrinol Metab. 2008;93:2515–22.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Hu D, Pawlikowska L, Kanaya A, Hsueh WC, Colbert L, Newman AB, Satterfield S, Rosen C, Cummings SR, Harris TB, Ziv E. Serum insulin-like growth factor-1 binding proteins 1 and 2 and mortality in older adults: the health, aging, and body composition study. J Am Geriatr Soc. 2009;57:1213–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Berrino F, Muti P, Micheli A, Bolelli G, Krogh V, Sciajno R, Pisani P, Panico S, Secreto G. Serum sex hormone levels after menopause and subsequent breast cancer. J Natl Cancer Inst. 1996;88(5):291–6.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lukanova A, Lundin E, Micheli A, Arslan A, Ferrari P, Rinaldi S, Krogh V, Lenner P, Shore RE, Biessy C, Muti P, Riboli E, Koenig KL, Levitz M, Stattin P, Berrino F, Hallmans G, Kaaks R, Tonioli P, Zeleniuch-Jacquotte A. Circulating levels of sex steroid hormones and risk of endometrial cancer in postmenopausal women. Int J Cancer. 2004;108:425–32.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Manjer J, Johansson R, Berglund G, Janzon L, Kaaks R, Agren A, Lenner P. Postmenopausal breast cancer risk in relation to sex steroid hormones, prolactin and SHBG (Sweden). Cancer Causes Control. 2003;14:599–607.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Gann PH, Hennekens CH, Ma J, Longcope C, Stampfer MJ. Prospective study of sex hormone levels and risk of prostate cancer. J Natl Cancer Inst. 1996;88(16):1118–26.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Sawada N, Iwasaki M, Inoue M, Sasazuki S, Yamaji T, Shimazu T, Tsugane S. Plasma testosterone and sex hormone-binding globulin concentrations and the risk of prostate cancer among Japanese men: a nested case-control study. Cancer Sci. 2010;101(12):2652–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Maggiolini M, Donze O, Jeannin E, Ando S, Picard D. Adrenal androgens stimulate the proliferation of breast cancer cells as direct activators of estrogen receptor alpha. Cancer Res. 1999;59:4864–9.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Jenkins PJ, Bustin SA. Evidence for a link between IGF-1 and cancer. Eur J Endocrinol. 2004;151 Suppl 1:S17–22.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Monzavi R, Cohen P. IGFs and IGFBPs: role in health and disease. Best Pract Res Clin Endocrinol Metab. 2002;16(3):433–47.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wilson JD. Charles-Edouard Brown-Sequard and the centennial of endocrinology. J Clin Endocrinol Metab. 1990;7:1403–9.CrossRefGoogle Scholar
  84. 84.
    Asthana S, Bhasin S, Bulter RN, Fillit H, Finkelstein J, Harman SM, Holstein L, Korenman SG, Matsumoto AM, Morley JE, Tsitouras P, Urban R. Masculine vitality: pros and cons of testosterone in treating the andropause. J Gerontol. 2004;59A:461–5.CrossRefGoogle Scholar
  85. 85.
    Nass R, Johannsson G, Christiansen JS, Kopchick JJ, Thorner MO. The aging population – is there a role for endocrine interventions? Growth Hormon IGF Res. 2009;19:89–100.CrossRefGoogle Scholar
  86. 86.
    Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women. Principal results from the Women’s Health Initiative Randomized Controlled Trial. J Am Med Assoc. 2002;288:321–33.CrossRefGoogle Scholar
  87. 87.
    Degens H, Always SE. Control of muscle size during disuse, disease, and aging. Int J Sports Med. 2006;27:94–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    National Advisory Council on Aging. Seniors in Canada 2006 report card. 2006; Retrieved 25 Jul 2011, from http://dsp-psd.pwgsc.gc.ca/Collection/HP30-1-2006E.pdf.
  89. 89.
    Canadian Fitness and Lifestyle Research Institute. Physical activity among Canadians: the current situation. 2006; Retrieved 15 Aug 2007, from http://www.cflri.ca/eng/statistics/surveys/documents/pam2005_sec1.pdf.
  90. 90.
    Hagstromer M, Troiano RP, Sjostrom M, Berrigan D. Levels and patterns of objectively assessed physical activity-a comparison between Sweden and the United States. Am J Epidemiol. 2010;171(10):1055–64.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Tissandier O, Peres G, Fiet J, Piette F. Testosterone, dehydroepiandrosterone, insulin-like growth factor 1, and insulin in sedentary and physically trained aged men. Eur J Appl Physiol. 2001;85:177–84.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ravaglia G, Forti P, Maioli F, Pratelli L, Vettori C, Bastagli L, Facchini ME, Cucinotta D. Regular moderate intensity physical activity and blood concentrations of endogenous anabolic hormones and thyroid hormones in aging men. Mech Ageing Dev. 2001;122:191–203.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Bonnefoy M, Kostka T, Patricot MC, Berthouze SE, Mathian B, Lacour JR. Physical activity and dehydroepiandrosterone sulphate, insulin-like growth factor I and testosterone in healthy active elderly people. Age Ageing. 1998;27:745–51.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Schmitz KH, Lin H, Sammel MD, Gracia CR, Nelson DB, Kapoor S, DeBlasis TL, Freeman EW. Association of physical activity with reproductive hormones: the Penn Ovarian Aging Study. Cancer Epidemiol Biomark Prev. 2007;16:2042–7.CrossRefGoogle Scholar
  95. 95.
    Suzuki R, Allen NE, Appleby PN, Key TJ, Dossus L, Tjonneland A, Johnsen NF, Overvad K, Sacerdote C, Palli D, Krogh V, Tumino R, Rohrmann S, Linseisen J, Boeing H, Trichopoulou A, Makrygiannis G, Misirli G, Bueno-de-Mesquita HB, May AM, MJT D, Sanchez MJ, Gurrea AB, Suarez LR, Buckland G, Larranaga N, Bingham S, Khaw KT, Rinaldi S, Slimani N, Jenab M, Riboli E, Kaaks R. Lifestyle factors and serum androgens among 636 middle aged men from seven countries in the European Prospective Investigation into Cancer (EPIC). Cancer Causes Control. 2009;20(6):811–21.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Chan MF, Dowsett M, Folkerd E, Bingham S, Wareham N, Luben R, Welch A, Khaw KT. Usual physical activity and endogenous sex hormones in postmenopausal women: the European prospective investigation onto cancer-Norfolk population study. Cancer Epidemiol Biomark Prev. 2007;16:900–5.CrossRefGoogle Scholar
  97. 97.
    Goh VHH, Tong TYY. The moderating impact of lifestyle factors on sex steroids, sexual activities and aging in Asian men. Asian J Androl. 2011;13(4):596–604.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Shiels MS, Rohrmann S, Menke A, Selvin E, Crespo CJ, Rifai N, Feinlaub M, Gualiar E, Platz EA. Association of cigarette smoking, alcohol consumption, and physical activity with sex steroid hormone levels in US men. Cancer Causes Control. 2009;20:877–86.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ari Z, Kutlu N, Uyanik BS, Taneli F, Buyukyazi G, Tavli T. Serum testosterone, growth hormone, and insulin-like growth factor-1 levels, mental reaction time, and maximal aerobic exercise in sedentary and long-term physically trained elderly males. Int J Neurosci. 2004;114:623–37.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Hawkins VN, Foster-Schubert K, Chubak J, Sorensen B, Ulrich CM, Stanczyk FZ, Plymate S, Stanford J, White E, Potter JD, McTiernan A. Effect of exercise on serum sex hormones in men: a 12-month randomized clinical trial. Med Sci Sports Exerc. 2008;40:223–33.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Friedenreich CM, Neilson HK, Woolcott CG, Wang Q, Yasui Y, Brant RF, Stanczyk KL, Courneya KS. Mediators and moderators of the effects of a year-long exercise intervention on endogenous sex hormones in postmenopausal women. Cancer Causes Control. 2011;22:1365–73.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hartman ML, Clasey JL, Weltman A, Thorner MO. Predictors of growth hormone secretions in aging. J Anti Aging Med. 2000;3(3):303–14.CrossRefGoogle Scholar
  103. 103.
    Deuschle M, Blum WF, Frystyk J, Orskov H, Schweiger U, Weber B, Korner A, Gotthardt U, Schmider J, Standhardt H, Heuser I. Endurance training and its effect upon the activity of the GH-IGFs system in the elderly. Int J Sports Med. 1998;19(4):250–4.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Allen NE, Appleby PN, Kaaks R, Rinaldi S, Davey GK, Key TJ. Lifestyle determinants of serum insulin-like growth-factor-I (IGF-I), C-peptide and hormone binding protein levels in British women. Cancer Causes Control. 2003;14:65–74.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Orenstein MR, Friedenreich CM. Review of physical activity and the IGF family. J Phys Act Health. 2004;1:291–320.CrossRefGoogle Scholar
  106. 106.
    McTiernan A, Sorensen B, Yasui Y, Tworoger SS, Ulrich CM, Irwin ML, Rudoplh RE, Stanczyk FZ, Schwartz RS, Potter JD. No effect of exercise on insulin-like growth factor 1 and insulin-like growth factor binding protein 3 in postmenopausal women: a 12-month randomized clinical trial. Cancer Epidemiol Biomark Prev. 2005;14:1020–1.CrossRefGoogle Scholar
  107. 107.
    Hameed M, Harridge SD, Goldspink G. Sarcopenia and hypertrophy: a role for insulin-like growth factor-1 in aged muscle? Exerc Sport Sci Rev. 2002;30:15–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Friedenreich CM, Neilson HK, Lynch BM. State of the epidemiological evidence on physical activity and cancer prevention. Eur J Cancer. 2010;46(14/SI):2593–604.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Shephard RJ. Limits to the measurement of habitual physical activity by questionnaire. Br J Sports Med. 2003;37:197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Esliger DW, Tremblay MS. Physical activity and inactivity profiling: the next generation. Appl Physiol Nutr Metab. 2007;32(2E):S195–207.CrossRefGoogle Scholar
  111. 111.
    Copeland JL, Esliger DW. Accelerometer assessment of physical activity in active, healthy older adults. J Aging Phys Act. 2009;17:17–30.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Tremblay MS, Chu SY, Mureika R. Methodological and statistical considerations for exercise-related hormone evaluations. Sports Med. 1995;20(2):90–108.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Kraemer WJ, Dunn-Lewis C, Comstock BA, Thomas GA, Clark JE, Nindl BC. Growth hormone, exercise, and athletic performance: a continued evolution of complexity. Curr Sports Med Rep. 2010;9:242–52.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Bowen RS, Turner MJ, Lightfoot J. Sex hormone effects on physical activity levels: why doesn’t Jane run as much as Dick? Sports Med. 2011;41:73–86.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Andersen RE, Crespo CJ, Franckowiak SC, Walston JD. Leisure-time activity among older US women in relation to hormone-replacement-therapy initiation. J Aging Phys Act. 2003;11:82–9.CrossRefGoogle Scholar
  116. 116.
    Anderson EJ, Lavoie HB, Strauss CC, Hubbard JL, Sharpless JL, Hall JE. Body composition and energy balance: lack of effect of short-term hormone replacement in postmenopausal women. Metabolism. 2001;50:265–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Redberg RF, Nishino M, McElhinney DB, Dae MW, Botvinick EH. Long-term estrogen replacement therapy is associated with improved exercise capacity in postmenopausal women without known coronary artery disease. Am Heart J. 2000;139:739–44.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Ibebunjo C, Eash JK, Li C, Ma Q, Glass DJ. Voluntary running, skeletal muscle gene expression, and signaling inversely regulated by orchidectomy and testosterone replacement. Am J Physiol Endocrinol Metab. 2011;300:E327–40.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Consitt LA, Copeland JL, Tremblay MS. Hormone responses to resistance vs. endurance exercise in premenopausal females. Can J Appl Physiol. 2001;26:574–87.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Tremblay MS, Copeland JL, Van Helder W. Effect of training status and exercise mode on endogenous steroid hormones in men. J Appl Physiol. 2004;96:531–9.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Copeland JL, Consitt LA, Tremblay MS. Hormonal responses to endurance and resistance exercise in females aged 19-69 years. J Gerontol A Biol Sci Med Sci. 2002;57:B158–65.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Hakkinen K, Pakarinen A, Kraemer WJ, Newton RU, Alen M. Basal concentrations and acute responses of serum hormones and strength development during heavy resistance training in middle-aged and elderly men and women. J Gerontol A Biol Sci Med Sci. 2000;55:B95–105.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Johnson LG, Kraemer RR, Haltom R, Kraemer GR, Gaines HE, Castracane VD. Effects of estrogen replacement therapy on dehydroepiandrosterone, dehydroepiandrosterone sulfate, and cortisol responses to exercise in postmenopausal women. Fertil Steril. 1997;68:836–43.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Kemmler W, Wildt L, Engelke K, Pintag R, Pavel M, Bracher B, Weineck J, Kalendar W. Acute hormonal responses of a high impact physical exercise session in early postmenopausal women. Eur J Appl Physiol. 2003;90:199–209.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Kraemer WJ, Hakkinen K, Newton RU, McCormick M, Nindl BC, Volek JS, Gotschalk LA, Fleck SJ, Campbell WW, Gordon SE, Farrell PA, Evans WJ. Acute hormonal responses to heavy resistance exercise in younger and older men. Eur J Appl Physiol Occup Physiol. 1998;77:206–11.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Smilos I, Piliandis T, Karamouzis M, Parlavantzas A, Tokmakidis SP. Hormonal responses after a strength endurance resistance exercise protocol in young and elderly males. Int J Sports Med. 2007;28:401–6.CrossRefGoogle Scholar
  127. 127.
    Zmuda JM, Thompson PD, Winters SJ. Exercise increases serum testosterone and sex hormone-binding globulin levels in older men. Metabolism. 1996;45:935–9.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Aldred S, Rohalu M, Edwards K, Burns V. Altered DHEA and DHEAS responses to exercise in healthy older adults. J Aging Phys Act. 2009;17:77–88.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Craig BW, Brown R, Everhart J. Effects of progressive resistance training on growth hormone and testosterone levels in young and elderly subjects. Mech Ageing Dev. 1989;49:159–69.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Copeland JL, Tremblay MS. Effect of HRT on hormone responses to resistance exercise in post-menopausal women. Maturitas. 2004;48:360–71.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Wideman L, Weltman JY, Hartman ML, Veldhuis JD, Weltman A. Growth hormone release during acute and chronic aerobic and resistance exercise: recent findings. Sports Med. 2002;32:987–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Weltman A, Weltman JY, Roy CP, Wideman L, Patrie J, Evans WS, Veldhuis JD. Growth hormone response to graded exercise intensities is attenuated and the gender difference abolished in older adults. J Appl Physiol. 2006;100:1623–9.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Chadan SG, Dill RP, Vanderhoek K, Parkhouse WS. Influence of physical activity on plasma insulin-like growth factor-1 and insulin-like growth factor binding proteins in healthy older women. Mech Ageing Dev. 1999;109:21–34.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Sidney KH, Shephard RJ. Growth hormone and cortisol – age difference, effects of exercise and training. Can J Appl Sports Sci. 1977;2:189–93.Google Scholar
  135. 135.
    Pyka G, Wiswell RA, Marcus R. Age-dependent effect of resistance exercise on growth hormone secretion in people. J Clin Endocrinol Metab. 1992;75:404–7.PubMedGoogle Scholar
  136. 136.
    Hakkinen K, Pakarinen A. Acute hormonal responses to heavy resistance exercise in men and women at different ages. Int J Sports Med. 1995;16:507–13.PubMedCrossRefGoogle Scholar
  137. 137.
    Gulka L, Dziura J, DiPietro L. Age-differences in GH response to exercise in women: the role of fitness, BMI, and insulin. J Phys Act Health. 2006;3:124–34.CrossRefGoogle Scholar
  138. 138.
    Clasey JL, Weltman A, Patri J, Weltman JY, Pezzoli S, Bouhard C, Thorner MO, Hartman ML. Abdominal visceral fat and fasting insulin are important predictors of 24-hour GH release independent of age, gender, and other physiological factors. J Clin Endocrinol Metab. 2001;86:3845–52.PubMedCrossRefGoogle Scholar
  139. 139.
    Vahl N, Jorgensen JO, Jurik AG, Christiansen JS. Abdominal adiposity and physical fitness are major determinants of the age associated decline in stimulated GH secretion in healthy adults. J Clin Endocrinol Metab. 1996;81:2209–15.PubMedGoogle Scholar
  140. 140.
    Lissett CA, Shalet SM. The insulin-like growth factor-I generation test: peripheral responsiveness to growth hormone is not decreased with ageing. Clin Endocrinol (Oxf). 2003;58:238–45.CrossRefGoogle Scholar
  141. 141.
    Bermon S, Ferrari P, Bernard P, Altare S, Dolisi C. Responses of total and free insulin-like growth factor-I and insulin-like growth factor binding protein-3 after resistance exercise and training in elderly subjects. Acta Physiol Scand. 1999;165:51–6.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Bonnefoy M, Kostka T, Patricot MC, Berthouze SE, Mathian B, Lacour JR. Influence of acute and chronic exercise on insulin-like growth factor-I in healthy active elderly men and women. Aging (Milano). 1999;11:373–9.Google Scholar
  143. 143.
    Kostka T, Patricot MC, Mathian B, Lacour JR, Bonnefoy M. Anabolic and catabolic hormonal responses to experimental two-set low-volume resistance exercise in sedentary and active elderly people. Aging Clin Exp Res. 2003;15:123–30.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Amir R, Ben Sira D, Sagiv M. IGF-I and FGF-2 responses to Wingate anaerobic test in older men. J Sports Sci Med. 2007;6:227–32.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Frystyk L. Exercise and the growth hormone insulin-like growth factor axis. Med Sci Sports Exerc. 2010;42:58–66.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Nindl BC, Alemany JA, Kellogg MD, Rood J, Allison SA, Young AJ, Montain SJ. Utility of circulating IGF-I as a biomarker for assessing body composition changes in men during periods of high physical activity superimposed upon energy and sleep restriction. J Appl Physiol. 2007;103:340–6.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Bamman MM, Shipp JR, Jiang J, Gower BA, Hunter GR, Goodman A, McLafferty CL Jr, Urban RJ. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab. 2001;280:E383–90.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Roberts MD, Dalbo VJ, Hassell SE, Kerksick CM. The expression of androgen-regulated genes before and after a resistance exercise bout in younger and older men. J Strength Cond Res. 2009;23:1060–7.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Ahtiainen JP, Hulmi JJ, Lehti M, Nyman K, Selanne H, Alen M, Pakarinen A, Kovanen V, Mero AA, Hakkinen K. Heavy resistance exercise training and skeletal muscle androgen receptor expression in younger and older men. Steroids. 2011;76:183–92.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Crewther B, Keogh J, Cronin J, Cook C. Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med. 2006;36:215–38.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K. Muscle hypertrophy, hormonal adaptations during strength training in strength-trained and strength development and untrained men. Eur J Appl Physiol. 2003;89:555–63.PubMedCrossRefGoogle Scholar
  152. 152.
    McCall GE, Byrnes WC, Fleck SJ, Dickinson A, Kraemer WJ. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol. 1999;24:96–107.PubMedCrossRefGoogle Scholar
  153. 153.
    Wilkinson SB, Tarnopolsky MA, Grant EJ, Correia CE, Phillips SM. Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol. 2006;98:546–55.PubMedCrossRefGoogle Scholar
  154. 154.
    Matheny RW, Merritt E, Zannikos SV, Farrar RP, Adamo ML. Serum IGF-I deficiency does not prevent compensatory skeletal muscle hypertrophy in resistance exercise. Exp Biol Med (Maywood). 2009;234:164–70.CrossRefGoogle Scholar
  155. 155.
    West DW, Kujbide GW, Moore DR, Atherton P, Burd NA, Padzik JP, DeLisio M, Tang JE, Parise G, Rennie MJ, Baker SK, Phillips SM. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587:5239–47.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ronnestad BR, Nygaard H, Raastad T. Physiological elevation of endogenous hormones results in superior strength training adaptation. Eur J Appl Physiol. 2011;111:2249–59.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    West DW, Phillips SM. Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone. Phys Sportsmed. 2010;38:97–104.PubMedCrossRefGoogle Scholar
  158. 158.
    Aizawa K, Iemitsu M, Maeda S, Otsuki T, Sato K, Ushida T, Mesaki N, Akimoto T. Acute exercise activates local bioactive androgen metabolism in skeletal muscle. Steroids. 2010;75:219–23.PubMedCrossRefGoogle Scholar
  159. 159.
    Aizawa K, Iemitsu M, Maeda S, Mesaki N, Ushida T, Akimoto T. Endurance exercise training enhances local sex steroidogenesis in skeletal muscle. Med Sci Sports Exerc. 2011;43:2072–80.PubMedCrossRefGoogle Scholar
  160. 160.
    Pollanen E, Sipila S, Alen M, Ronkainen PH, Ankarberg-Lindgren C, Puolakka J, Suominen H, Hamalainen E, Turpinen U, Kontinen YT, Kovanen V. Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women. Aging Cell. 2011;10:650–60.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Velloso CP, Harridge SD. Insulin-like growth factor-I E peptides: implications for aging skeletal muscle. Scand J Med Sci Sports. 2010;20:20–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Adams GR, Haddad F. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol. 1996;81:2509–16.PubMedCrossRefGoogle Scholar
  163. 163.
    Singh MAF, Ding W, Manfredi TJ, Solares GS, O’Neill EF, Clements KM, Ryan ND, Keyhaysias JJ, Fielding RA, Evans WJ. Insulin-like growth factor I in skeletal muscle after weight-lifting exercise in frail elders. Am J Physiol Endocrinol Metab. 1999;277:E135–43.CrossRefGoogle Scholar
  164. 164.
    Hameed M, Tofot A, Pedersen B, Harridge S, Goldspink G. Effects of eccentric cycling exercise on IGF-I splice variant expression in the muscles of young and elderly people. Scand J Med Sci Sports. 2008;18:447–52.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Paterson DH, Warburton DE. Physical activity and functional limitations in older adults: a systematic review related to Canada’s Physical Activity Guidelines. Int J Behav Nutr Phys Act. 2010;7:38–60.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Copeland JL. Anabolic hormones in aging women: effects of supplementation vs. physical activity. Can J Appl Physiol. 2004;29(1):76–89.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of KinesiologyUniversity of LethbridgeLethbridgeCanada

Personalised recommendations