Vitamin D and Exercise Performance

  • Joi J. Thomas
  • D. Enette Larson-MeyerEmail author
Part of the Contemporary Endocrinology book series (COE)


Vitamin D is a unique vitamin which includes it having hormone-like actions. Synthesized cutaneously from UVB light or derived from the diet, vitamin D is essential for maintaining bone health and calcium homeostasis. Vitamin D is transported in the circulation bound to vitamin D-binding protein (DBP). The active form of vitamin D, 1,25(OH)2D, binds to the vitamin D receptor (VDR), a ligand-activated transcription factor, and this allows modulation of gene expression.

Recently there has been a resurgence of hypovitaminosis D that has been deemed a worldwide pandemic. This deficiency has highlighted the importance of maintaining optimal vitamin D status for non-calcemic health benefits including immunity, reproductive function, muscle function, and prevention of sarcopenia. Inverse associations with 25(OH)D concentration and increased incidence of several diseases and disorders have been established including periodontal disease, cardiovascular disease, autoimmune disorders, respiratory infections, and certain cancers. Research in athletic populations is currently limited, but findings in nonathletic populations suggest that vitamin D status is associated with jumping force and velocity. Further research is necessary to determine the impact of vitamin D status on health and performance in athletes.


Bone mineral content Undifferentiated connective tissue disease Professional basketball player Severe hypovitaminosis 


  1. 1.
    Bouillon R, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29(6):726–76.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80(6 Suppl):1678S–8.PubMedCrossRefGoogle Scholar
  3. 3.
    McCollum EV, Davis M. The necessity of certain lipins in the diet during growth. J Biol Chem. 1913;25:167–75.Google Scholar
  4. 4.
    Mellanby E. An experimental investigation on rickets. Lancet. 1919;1:407–12.Google Scholar
  5. 5.
    McCollum EV, et al. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;61:293–312.Google Scholar
  6. 6.
    Steenbock H, Black A. Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying-properties in a ration by exposure to ultra-violet light. J Biol Chem. 1924;61:405–22.Google Scholar
  7. 7.
    Hess AF. The contribution of biology, chemistry and physics to the newer knowledge of rickets. Science. 1928;67(1735):333–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Hess AF. The prevention and cure of rickets by sunlight. Am J Public Health. 1922;12(2):104–7.CrossRefGoogle Scholar
  9. 9.
    Windaus A. The chemistry of irradiated ergosterol. Proc R Soc B Biol Sci. 1931;108(759):568–75.Google Scholar
  10. 10.
    Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006;92(1):4–8.PubMedCrossRefGoogle Scholar
  11. 11.
    DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80:1689S–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Christakos S, et al. Vitamin D: molecular mechanism of action. Ann N Y Acad Sci. 2007;1116:340–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Stechschulte SA, Kirsner RS, Federman DG. Vitamin D: bone and beyond, rationale and recommendations for supplementation. Am J Med. 2009;122(9):793–802.PubMedCrossRefGoogle Scholar
  14. 14.
    Saintonge S, Bang H, Gerber LM. Implications of a new definition of vitamin D deficiency in a multiracial us adolescent population: the National Health and Nutrition Examination Survey III. Pediatrics. 2009;123(3):797–803.PubMedCrossRefGoogle Scholar
  15. 15.
    Mughal MZ, Khadilkar AV. The accrual of bone mass during childhood and puberty. Curr Opin Endocrinol Diabetes Obes. 2011;18(1):28–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Heaney RP. The Vitamin D requirement in health and disease. J Steroid Biochem Mol Biol. 2005;97(1–2):13–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Bouillon R, Van Cromphaut S, Carmeliet G. Intestinal calcium absorption: molecular vitamin D mediated mechanisms. J Cell Biochem. 2003;88(2):332–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Udowenko M, Trojian T. Vitamin D: extent of deficiency, effect on muscle function, bone health, performance, and injury prevention. Conn Med. 2010;74(8):477–80.PubMedGoogle Scholar
  19. 19.
    Verstuyf A, et al. Vitamin D: a pleiotropic hormone. Kidney Int. 2010;78(2):140–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Larson-Meyer DE, Willis KS. Vitamin D and athletes. Curr Sports Med Rep. 2010;9(4):220–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Bischoff HA, et al. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res. 2003;18(2):343–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Asp Med. 2008;29(6):407–14.CrossRefGoogle Scholar
  23. 23.
    Sato Y, et al. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis. 2005;20(3):187–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Pfeifer M, Begerow B, Minne HW. Vitamin D and muscle function. Osteoporos Int. 2002;13(3):187–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Aquila S, et al. Human sperm anatomy: ultrastructural localization of 1alpha,25-dihydroxyvitamin D receptor and its possible role in the human male gamete. J Anat. 2008;213(5):555–64.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lewis S, et al. Vitamin D deficiency and pregnancy: from preconception to birth. Mol Nutr Food Res. 2010;54(8):1092–102.PubMedGoogle Scholar
  27. 27.
    Grandi NC, Breitling LP, Brenner H. Vitamin D and cardiovascular disease: systematic review and meta-analysis of prospective studies. Prev Med. 2010;51(3–4):228–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Covic A, Voroneanu L, Goldsmith D. The effects of vitamin D therapy on left ventricular structure and function – are these the underlying explanations for improved CKD patient survival? Nephron Clin Pract. 2010;116(3):c187–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Pittas AG, et al. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92(6):2017–29.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bland R, et al. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in pancreatic islets. J Steroid Biochem Mol Biol. 2004;89–90(1–5):121–5.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kinuta K, et al. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology. 2000;141(4):1317–24.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Blomberg Jensen M, et al. Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum Reprod. 2010;25(5):1303–11.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hamilton B. Vitamin D and human skeletal muscle. Scand J Med Sci Sports. 2010;20(2):182–90.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zitterman A. Vitamin D in preventive medicine: are we ignoring the evidence? Br J Nutr. 2003;89:552–72.CrossRefGoogle Scholar
  35. 35.
    Cheng JB, et al. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004;101(20):7711–5.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zhender D, et al. Extrarenal expression of 25-hydroxyvitamin D3-1α-hydroxylase. J Clin Endocrinol Metab. 2001;86(2):888–94.Google Scholar
  37. 37.
    Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008;8(9):685–98.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Pérez-López FR, Chedraui P, Fernández-Alonso AM. Vitamin D and aging: beyond calcium and bone metabolism. Maturitas. 2011;69(1):27–36.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Misra M, et al. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics. 2008;122(2):398–417.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Pérez-López FR, et al. EMAS position statement: vitamin D and postmenopausal health. Maturitas. 2012;71(1):83–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Rosen CJ. Vitamin D insufficiency. N Engl J Med. 2011;364:248–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Valimaki VV, Loyttyniemi E, Valimaki MJ. Vitamin D fortification of milk products does not resolve hypovitaminosis D in young Finnish men. Eur J Clin Nutr. 2007;61(4):493–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Gibbs PE, Dugaiczyk A. Origin of structural domains of the serum-albumin gene family and a predicted structure of the gene for vitamin D-binding protein. Mol Biol Evol. 1987;4(4):364–79.PubMedGoogle Scholar
  44. 44.
    Shah AB, et al. Selective inhibition of the C5a chemotactic cofactor function of the vitamin D binding protein by 1,25(OH)2 vitamin D3. Mol Immunol. 2006;43(8):1109–15.PubMedCrossRefGoogle Scholar
  45. 45.
    White P, Cooke N. The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol Metab. 2000;11(8):320–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Van Baelen H, Bouillon R, De Moor P. Vitamin D-binding protein (Gc-globulin) binds actin. J Biol Chem. 1980;255(6):2270–2.PubMedGoogle Scholar
  47. 47.
    John GH. Plasma vitamin D-binding protein (Gc-globulin): multiple tasks. J Steroid Biochem Mol Biol. 1995;53(1–6):579–82.Google Scholar
  48. 48.
    Gomme PT, Bertolini J. Therapeutic potential of vitamin D-binding protein. Trends Biotechnol. 2004;22(7):340–5.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Yamamoto N, Naraparaju VR. Role of vitamin D3-binding protein in activation of mouse macrophages. J Immunol. 1996;157(4):1744–9.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Lee WM, Galbraith RM. The extracellular actin-scavenger system and actin toxicity. N Engl J Med. 1992;326(20):1335–41.PubMedCrossRefGoogle Scholar
  51. 51.
    Ceglia L, et al. Multi-step immunofluorescent analysis of vitamin D receptor loci and myosin heavy chain isoforms in human skeletal muscle. J Mol Histol. 2010;41(2–3):137–42.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ramagopalan SV, et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 2010;20(10):1352–60.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Meyer MB, et al. The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. Mol Endocrinol. 2006;20(6):1447–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Savkur RS, et al. Coactivation of the human vitamin D receptor by the peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Mol Pharmacol. 2005;68(2):511–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19(2):73–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Binkley N, et al. Current status of clinical 25-hydroxyvitamin D measurement: an assessment of between-laboratory agreement. Clin Chim Acta. 2010;411(23–24):1976–82.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Binkley N, et al. Assay variation confounds the diagnosis of hypovitaminosis D: a call for standardization. J Clin Endocrinol Metab. 2004;89(7):3152–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Aloia JF, et al. Vitamin D intake to attain a desired serum 25-hydroxyvitamin D concentration. Am J Clin Nutr. 2008;87(6):1952–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008;87(suppl):1080S–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Bischoff-Ferrari HA, et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84:18–28.PubMedCrossRefGoogle Scholar
  61. 61.
    Cannell JJ, Hollis BW. Use of vitamin D in clinical practice. Altern Med Rev. 2008;13(1):6–20.PubMedGoogle Scholar
  62. 62.
    Munger KL, et al. Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004;62(1):60–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Cantorna MT. Mechanisms underlying the effect of vitamin D on the immune system. Proc Nutr Soc. 2010;69(03):286–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Shin M-H, et al. Intake of dairy products, calcium, and vitamin D and risk of breast cancer. J Natl Cancer Inst. 2002;94(17):1301–10.PubMedCrossRefGoogle Scholar
  65. 65.
    Dietrich T, et al. Association between serum concentrations of 25-hydroxyvitamin D3 and periodontal disease in the US population. Am J Clin Nutr. 2004;80(1):108–13.PubMedGoogle Scholar
  66. 66.
    Cutolo M, Pizzorni C, Sulli A. Vitamin D endocrine system involvement in autoimmune rheumatic diseases. Autoimmun Rev. 2011;11(2):84–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Eikelenboom MJ, et al. Gender differences in multiple sclerosis: cytokines and vitamin D. J Neurol Sci. 2009;286(1–2):40–2.PubMedCrossRefGoogle Scholar
  68. 68.
    Smolders J, et al. The relevance of vitamin D receptor gene polymorphisms for vitamin D research in multiple sclerosis. Autoimmun Rev. 2009;8(7):621–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Hajas A, et al. Vitamin D insufficiency in a large MCTD population. Autoimmun Rev. 2011;10(6):317–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Giovannucci E, et al. 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168(11):1174–80.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ravani P, et al. Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int. 2009;75(1):88–95.PubMedCrossRefGoogle Scholar
  72. 72.
    Vanga SR, et al. Role of vitamin D in cardiovascular health. Am J Cardiol. 2010;106:798–805.CrossRefGoogle Scholar
  73. 73.
    Artaza JN, Mehrotra R, Norris KC. Vitamin D and the cardiovascular system. Clin J Am Soc Nephrol. 2009;4(9):1515–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Nemerovski CW, et al. Vitamin D and cardiovascular disease. Pharmacotherapy. 2009;29(6):691–708.PubMedCrossRefGoogle Scholar
  75. 75.
    Mitri J, et al. Effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr. 2011;94(2):486–94.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Pittas AG, Dawson-Hughes B. Vitamin D and diabetes. J Steroid Biochem Mol Biol. 2010;121(1–2):425–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Garland CF, et al. Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet. 1989;2(8673):1176–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Garland CF, Garland FC, Gorham ED. Calcium and vitamin D. Their potential roles in colon and breast cancer prevention. Ann N Y Acad Sci. 1999;889:107–19.PubMedCrossRefGoogle Scholar
  79. 79.
    Gorham ED, et al. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007;32(3):210–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Bertone-Johnson ER, et al. Plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D and risk of breast cancer. Cancer Epidemiol Biomark Prev. 2005;14(8):1991–7.CrossRefGoogle Scholar
  81. 81.
    Krishnan AV, et al. Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocrinology. 2010;151(1):32–42.PubMedCrossRefGoogle Scholar
  82. 82.
    Ginde AA, Mansbach JM, Camargo CA Jr. Vitamin D, respiratory infections and asthma. Curr Allergy Asthma Rep. 2009;9(1):81–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Kreutz M, et al. 1,25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood. 1993;82(4):1300–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Cantorna MT, et al. 1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr. 2000;130:2648–52.PubMedCrossRefGoogle Scholar
  85. 85.
    Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci. 1996;93(15):7861–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Cantorna MT, et al. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr. 2004;80(suppl):1717S–20.PubMedCrossRefGoogle Scholar
  87. 87.
    Froicu M, et al. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol Endocrinol. 2003;17(12):2386–92.PubMedCrossRefGoogle Scholar
  88. 88.
    Mithal A, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20(11):1807–20.PubMedCrossRefGoogle Scholar
  89. 89.
    Sachan A, et al. High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. Am J Clin Nutr. 2005;81(5):1060–4.PubMedCrossRefGoogle Scholar
  90. 90.
    Puri S, et al. Vitamin D status of apparently healthy schoolgirls from two different socioeconomic strata in Delhi: relation to nutrition and lifestyle. Br J Nutr. 2008;99(4):876–82.PubMedCrossRefGoogle Scholar
  91. 91.
    Moussavi M, et al. Prevalence of vitamin D deficiency in Isfahani high school students in 2004. Horm Res. 2005;64(3):144–8.PubMedGoogle Scholar
  92. 92.
    Siddiqui AM, Kamfar HZ. Prevalence of vitamin D deficiency rickets in adolescent school girls in Western region, Saudi Arabia. Saudi Med J. 2007;28(3):441–4.PubMedGoogle Scholar
  93. 93.
    Looker AC, et al. Serum 25-hydroxyvitamin D status of the US population: 1988–1994 compared with 2000–2004. Am J Clin Nutr. 2008;88(6):1519–27.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lehtonen-Veromaa M, et al. Vitamin D intake is low and hypovitaminosis D common in healthy 9- to 15-year-old Finnish girls. Eur J Clin Nutr. 1999;53:746–51.PubMedCrossRefGoogle Scholar
  95. 95.
    Skull SA, et al. Vitamin D deficiency is common and unrecognized among recently arrived adult immigrants from The Horn of Africa. Intern Med J. 2003;33:47–51.PubMedCrossRefGoogle Scholar
  96. 96.
    Hamilton B, et al. Vitamin D deficiency is endemic in Middle Eastern sportsmen. Public Health Nutr. 2010;13(10):1528–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Constantini NW, et al. High prevalence of vitamin D insufficiency in athletes and dancers. Clin J Sport Med. 2010;20(5):368–71.PubMedCrossRefGoogle Scholar
  98. 98.
    Halliday TM, et al. Vitamin D status relative to diet, lifestyle, injury, and illness in college athletes. Med Sci Sports Exerc. 2011;43(2):335–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Lovell G. Vitamin D status of females in an elite gymnastics program. Clin J Sport Med. 2008;18(2):151–61.CrossRefGoogle Scholar
  100. 100.
    Bescos Garcia R, Rodriguez Guisado FA. Low levels of vitamin D in professional basketball players after wintertime: relationship with dietary intake of vitamin D and calcium. Nutr Hosp. 2011;26(5):945–51.PubMedGoogle Scholar
  101. 101.
    Snellman G, et al. Seasonal genetic influence on serum 25-hydroxyvitamin D levels: a twin study. PLoS One. 2009;4(11):e7747.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    McKenzie RL, Liley JB, Bjorn LO. UV radiation: balancing risks and benefits. Photochem Photobiol. 2009;85(1):88–98.PubMedCrossRefGoogle Scholar
  103. 103.
    Hall LM, et al. Vitamin D intake needed to maintain target serum 25-hydroxyvitamin D concentrations in participants with low sun exposure and dark skin pigmentation is substantially higher than current recommendations. J Nutr. 2010;140(3):542–50.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Wortsman J, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3.PubMedCrossRefGoogle Scholar
  105. 105.
    Simpson RU, Thomas GA, Arnold AJ. Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscles. J Biol Chem. 1985;260(15):8882–91.PubMedGoogle Scholar
  106. 106.
    Boland R. Role of vitamin D in skeletal muscle function. Endocr Rev. 1986;7(4):434–48.PubMedCrossRefGoogle Scholar
  107. 107.
    Endo I, et al. Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology. 2003;144(12):5138–44.PubMedCrossRefGoogle Scholar
  108. 108.
    Morley JE, et al. Sarcopenia. J Lab Clin Med. 2001;137(4):231–43.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Fielding RA, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56.PubMedCrossRefGoogle Scholar
  110. 110.
    Visser M, et al. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab. 2003;88(12):5766–72.PubMedCrossRefGoogle Scholar
  111. 111.
    Moreira-Pfrimer LDF, et al. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Ann Nutr Metab. 2009;54(4):291–300.PubMedCrossRefGoogle Scholar
  112. 112.
    El-Hajj Fuleihan G, et al. Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab. 2006;91(2):405–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Rejnmark L. Effects of vitamin D on muscle function and performance: a review of evidence from randomized controlled trials. Ther Adv Chronic Dis. 2010;2(1):25–37.CrossRefGoogle Scholar
  114. 114.
    Scott D, et al. A prospective study of the associations between 25-hydroxy-vitamin D, sarcopenia progression and physical activity in older adults. Clin Endocrinol. 2010;73(5):581–7.CrossRefGoogle Scholar
  115. 115.
    Corless D, et al. Do vitamin D supplements improve the physical capabilities of elderly hospital patients? Age Ageing. 1985;14(2):76–84.PubMedCrossRefGoogle Scholar
  116. 116.
    Latham NK, et al. A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS). J Am Geriatr Soc. 2003;51(3):291–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Cannell JJ, et al. Athletic performance and vitamin D. Med Sci Sports Exerc. 2009;41(5):1102–10.PubMedCrossRefGoogle Scholar
  118. 118.
    Allen R. Effect on ultraviolet radiation on physical fitness. Arch Phys Med Rehabil. 1945;26:641–4.PubMedGoogle Scholar
  119. 119.
    Rosentsweig J. The effect of a single suberythemic biodose of ultraviolet radiation upon the strength of college women. J Assoc Phys Ment Rehabil. 1967;21(4):131–3.PubMedGoogle Scholar
  120. 120.
    Rosentsweig J. The effect of a single suberythemic biodose of ultraviolet radiation upon the endurance of college women. J Sports Med Phys Fitness. 1969;9(2):104–6.Google Scholar
  121. 121.
    Ward KA, et al. Vitamin D status and muscle function in post-menarchal adolescent girls. J Clin Endocrinol Metab. 2009;94(2):559–63.PubMedCrossRefGoogle Scholar
  122. 122.
    Ward KA, et al. A randomized, controlled trial of vitamin D supplementation upon musculoskeletal health in postmenarchal females. J Clin Endocrinol Metab. 2010;95(10):4643–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of AthleticsUniversity of WyomingLaramieUSA
  2. 2.Department of Family and Consumer ServicesUniversity of WyomingLaramieUSA

Personalised recommendations