Methodological Considerations in Exercise Endocrinology

  • Anthony C. HackneyEmail author
  • Abbie E. Smith-Ryan
  • Julius E. Fink
Part of the Contemporary Endocrinology book series (COE)


The intent of this chapter is to provide an overview of the background information on methodological factors that influence and add variance to endocrine outcome measurements typically used in exercise studies. It is well established that numerous factors such as sex, ambient temperature, age, and training status can influence hormonal responses to exercise, but measurements can also be dramatically influenced by simply the means chosen to sample specimens (e.g., venipuncture vs. catheterization). Lack of knowledge and experience with such influencing factors can compromise the accuracy and validity of exercise endocrinology research. Our purpose in doing this chapter is to aid and improve the quality of exercise science research of investigators inexperienced in endocrinology. For the purpose of this review, we categorized influencing factors as those that are “physiological” and those that are “procedural-analytical” and address steps and actions researchers can take to account for their influence. It is recommended that researchers should design their studies to monitor, control, and adjust for the physiological and procedural-analytical factors discussed within this chapter. By doing so, they will find less variance in their hormonal outcomes and thereby will increase the validity of their physiological data. These actions can assist the researcher in the interpretation and understanding of endocrine data and, in turn, make their research more scientifically rigorous.


Bioanalytical procedures Hormonal responses Biomarker data transformations-reduction Scientific Method 


  1. 1.
    Trembly MS, Chu SY, Mureika R. Methodological and statistical considerations for exercise-related hormone evaluations. Sports Med. 1990;20(2):90–108.CrossRefGoogle Scholar
  2. 2.
    Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    McMurray RG, Hackney AC. The endocrine system and exercise. In: Garrett W, editor. Sports medicine. New York: Williams & Wilkins; 2000. p. 135–62.Google Scholar
  4. 4.
    International Union of Pure and Applied Chemistry (International Union of Biochemistry and Molecular Biology): recommendations on organic & biochemical nomenclature, symbols & terminology.
  5. 5.
    Warne GL, Kanumakala S. Molecular endocrinology of sex differentiation. Sem Reprod Med. 2002;20(3):169–80.CrossRefGoogle Scholar
  6. 6.
    Webb ML, Wallace JP, Hamill C, Hodgson JL, Mashaly MM. Serum testosterone concentration during two hours of moderate intensity treadmill running in trained and untrained men and women. Endocrinol Res. 1984;10:27–38.CrossRefGoogle Scholar
  7. 7.
    Bunt JC, Bahr JM, Bemben DA. Comparison of estradiol and testosterone levels during and immediately following prolonged exercise in moderately active males and females. Endocrinol Res. 1987;13:157–72.CrossRefGoogle Scholar
  8. 8.
    Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. 2000;80:1055–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Foster DL, Nagatani S. Physiological perspectives on leptin as a regulator of reproduction: role in timing puberty. Biol Reprod. 1999;60(2):205–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Ruby BC, Robergs RA. Gender differences in substrate utilization during exercise. Sports Med. 1994;17:393–410.PubMedCrossRefGoogle Scholar
  11. 11.
    Heavens KR, Szivak TK, Hooper DR, Dunn-Lewis C, Comstock BA, Flanagan SD, Looney DP, Kupchak BR, Maresh CM, Volek JS. The effects of high intensity short rest resistance exercise on muscle damage markers in men and women. J Strength Cond Res. 2014;28:1041–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Bunt JC. Metabolic actions of estradiol: significance for acute and chronic exercise responses. Med Sci Sports Exerc. 1990;22(3):286–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Hackney AC, McCracken M, Ainsworth BA. Substrate metabolism responses to submaximal exercise in the mid-follicular and mid-luteal phase of the menstrual cycle. Int J Sport Nutr. 1994;4:299–308.PubMedCrossRefGoogle Scholar
  14. 14.
    Hackney AC, McMurray RG, Judelson DA, Harrell JS. Relationship between caloric intake, body composition, and physical activity to leptin, thyroid hormones, and cortisol in adolescents. Jpn J Physiol. 2003;53(6):475–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Horswill CA, Zipf WB, Kien CL, Kahl EB. Insulin’s contribution to growth in children and the potential for exercise to mediate insulin’s action. Pediatr Exerc Sci. 1997;9:18–32.CrossRefGoogle Scholar
  16. 16.
    Amile SA, Caprio S, Sherwin RS, Plewe G, Haymond MW, Tamborlane WV. Insulin resistance of puberty: a defect restricted to peripheral glucose metabolism. J Clin Endocrinol Metab. 1991;72:277–82.CrossRefGoogle Scholar
  17. 17.
    Isurugi K, Fukutani K, Takayasu H, Wakabayashi K, Tamaoki B. Age related changes in serum LH and FSH level in normal men. J Clin Endocrinol Metab. 1974;39:955–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Purifoy EE, Koopmars LH, Tatum RW. Steroid hormones and aging: free testosterone, testosterone and androstenedione in normal females age 20–87 years. Hum Biol. 1980;52:181–91.PubMedGoogle Scholar
  19. 19.
    Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab. 1984;59:551–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Phillips BE, Szewczyk NJ, Greenhaff PL, Smith K, Atherton PJ. Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans. J Physiol. 2016;594:7399–417.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Aloia JF, Feuerman M, Yeh JK. Reference range for serum parathyroid hormone. Endocr Pract. 2006;12(2):137–44.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Adlercreutz H, Goldin BR. Estrogen metabolism and excretion in Oriental and Caucasian women. J Natl Cancer Inst. 1994;86:1076–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Benn PA, Clive JM, Collins R. Medians for second trimester maternal serum AFP, unconjugated estriol, and hCG: differences between race or ethnic groups. Clin Chem. 1997;43:333–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Mittelmark RA. Hormonal responses to exercise in pregnancy. In: Mittelmark RA, Wiswell RA, Drinkwater BL, editors. Exercise in pregnancy. Baltimore: Williams & Wilkins; 1991. p. 175–84.Google Scholar
  25. 25.
    Wang C, Christenson P, Swerdloff R. Clinical relevance of racial and ethnic differences in sex steroids. J Clin Endocrinol Metab. 2007;92(7):2433–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Abbott WG, Foley JE. Comparison of body composition, adipocyte size, and glucose and insulin concentrations in Pima Indian and Caucasian children. Metabolism. 1987;36(6):576–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Punjani N, Nayan M, Grober E, Lo K, Lau S, Jarvi K. The effect of ethnicity and race on semen analysis and hormones in the infertile patient. J Urol. 2018;199:e248.Google Scholar
  28. 28.
    Fink J, Matsumoto M, Tamura Y. Potential application of testosterone replacement therapy as treatment for obesity and type 2 diabetes in men. Steroids. 2018;138:161–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Ivandic A, Prpic-Krizevac I, Sucic M. Hyperinsulinemia and sex hormone in healthy premenopausal women: relative contribution of obesity, obese type, and duration of obesity. Metabolism. 1998;47:13–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Hansen BC, Jen KL, Pek SB. Rapid oscillations on plasma insulin, glucagons, and glucose in obese and normal weight humans. J Clin Endocrinol Metab. 1982;54(4):785–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Florkowski CM, Collier GR, Zimmet PZ. Low dose growth hormone replacement lowers plasma leptin and fat stores without affecting body mass index in adults with growth hormone deficiency. Clin Endocrinol. 1996;45:769–73.CrossRefGoogle Scholar
  32. 32.
    Pasquali R, Vicennati V. Activity of the hypothalamic-pituitary-adrenal axis in different obese phenotypes. Int J Obes Relat Metab Disord. 2000;24(Suppl 3):S47–9.PubMedCrossRefGoogle Scholar
  33. 33.
    McMurray RG, Hackney AC. Interactions of metabolic hormones, adipose tissue and exercise. Sports Med. 2005;35(5):393–412.PubMedCrossRefGoogle Scholar
  34. 34.
    Hurley BF, Nemeth PM, Martin WH. Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol. 1986;60:562–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Rahkila P, Soimajarvi J, Karvinrn E. Lipid metabolism during exercise II: respiratory exchange ratio and muscle glycogen content during 4 h bicycle ergometry and two groups of health men. Eur J Appl Physiol. 1980;44(3):246–54.CrossRefGoogle Scholar
  36. 36.
    Pasman WJ, Westertrep-Plantenga MS, Saris WHM. The effect of exercise training on leptin levels in obese males. Am J Physiol Endocrinol Metab. 1998;37:E280–6.CrossRefGoogle Scholar
  37. 37.
    Ryan AS, Partley RE, Elahi D. Changes in leptin and insulin action with resistive training in postmenopausal women. Int J Obes Relat Metab Disord. 2000;24:27–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Rabkin JG, Wagner GJ, Rabkin R. A double-blind, placebo-controlled trial of testosterone therapy for HIV-positive men with hypogonadal symptoms. Arch Gen Psychiatry. 2000;57:141–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J Clin Endocrinol Metab. 2011;96:2341–53.PubMedCrossRefGoogle Scholar
  40. 40.
    Wong N, Levy M, Stephenson I. Hypogonadism in the HIV-infected man. Curr Treat Options Infect Dis. 2017;9:104–16.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hackney AC. Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Expert Rev Endocrinol Metab. 2006;1(6):783–92.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Dorn LD, Burgress ES, Dichek HL, Putman FW, Chrousos GP, Gold PW. Thyroid hormone concentrations in depressed and nondepressed adolescents: group difference and behavioral relations. J Am Acad Child Adolesc Psychiatry. 1996;35:299–306.PubMedCrossRefGoogle Scholar
  43. 43.
    Vaernes R, Ursin H, Darragh A, Lambe R. Endocrine response patterns and psychological correlates. J Psychosom Res. 1982;26:123–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Hackney AC. Exercise as a stressor to the neuroendocrine system. Medicina. 2006;42(10):788–97.PubMedGoogle Scholar
  45. 45.
    Hammer MB, Hitri A. Plasma β-endorphin levels in post-traumatic stress disorder: a preliminary report on response to exercise-induced stress. J Neuropsychiatry Clin Neurosci. 1992;4(1):59–63.CrossRefGoogle Scholar
  46. 46.
    Gerra G, Volpi R, Delsignore R, et al. ACTH and β-endorphin responses to physical exercise in adolescent women tested for anxiety and frustration. Psychiatry Res. 1992;41(2):179–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(4):385–96.PubMedCrossRefGoogle Scholar
  48. 48.
    Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56(6):893–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Landgren B, Aedo A, Diczfalusy E. Hormonal changes associated with ovulation and luteal function. In: Flamigni C, Givens J, editors. The gonadotropins: basic science and clinical aspects in females. London: Academic; 1982. p. 200–12.Google Scholar
  50. 50.
    Hackney AC, Cyren HC, Brammeier M, Sharp RL. Effects of the menstrual cycle on insulin-glucose at rest and in response to exercise. Biol Sport. 1993;10(2):73–81.Google Scholar
  51. 51.
    Vanheest JL, Mahoney CE, Rodgers CD. Oral contraceptive use and physical performance. In: Kraemer WJ, Rogol A, editors. The endocrine system in sports and exercise. Oxford: Blackwell; 2005. p. 250–60.CrossRefGoogle Scholar
  52. 52.
    Loucks AB. Physical activity, fitness and female reproductive morbidity. In: Bouchard C, Shepard RJ, Stephens T, editors. Physical activity, fitness and health: international proceedings and consensus statement. Champaign: Human Kinetics; 1994. p. 943–54.Google Scholar
  53. 53.
    Matsumoto AM, Bremner WJ. Modulation of pulsatile gonadotropin secretion by testosterone in man. J Clin Endocrinol Metab. 1984;58(4):609–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Rose R, Kreutz L, Holoday J, Sulak K, Johnson C. Diurnal variation of plasma testosterone and cortisol. J Endocrinol. 1972;54:177–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Rose SR, Nisula BC. Circadian variation of thyrotropin in childhood. J Clin Endocrinol Metab. 1989;68:1086–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Hackney AC, Viru A. Twenty-four cortisol response to multiple daily exercise sessions of moderate and high intensity. Clin Physiol. 1999;19:178–82.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Weitzman ED. Circadian rhythms and episodic hormone secretion. Annu Rev Med. 1976;27:225–43.PubMedCrossRefGoogle Scholar
  58. 58.
    Goodman HM. Endocrinology concepts for medical students. Adv Physiol Educ. 2005;25(4):213–24.CrossRefGoogle Scholar
  59. 59.
    Hackney AC, Zack E. Physiological day-to-day variability of select hormones at rest in exercise-trained men. J Endocrinol Investig. 2006;29(6):RC9–12.CrossRefGoogle Scholar
  60. 60.
    Schulz P, Knabe R. Biological uniqueness and the definition of normality: part 2—the endocrine ‘finger print’ of healthy adults. Med Hypotheses. 1994;42:63–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Antonio L, Wu FC, O’neill TW, Pye SR, Ahern TB, Laurent MR, Huhtaniemi IT, Lean ME, Keevil BG, Rastrelli G. Low free testosterone is associated with hypogonadal signs and symptoms in men with normal total testosterone. J Clin Endocrinol Metabol. 2016;101:2647–57.CrossRefGoogle Scholar
  62. 62.
    Finberg JP, Berlyne GM. Renin and aldosterone secretion following acute environmental heat exposure. Isr J Med Sci. 1976;12:844–7.PubMedGoogle Scholar
  63. 63.
    Galbo H, Houston ME, Christensen NJ, Holst JJ, Nielsen B, Nygaard E, et al. The effect of water temperature on the hormonal response to prolonged swimming. Acta Physiol Scand. 1979;105(3):326–37.PubMedCrossRefGoogle Scholar
  64. 64.
    Mordes JP, Blume FD, Boyer S, Zheng MR, Braverman LE. High altitude pituitary-thyroid dysfunction on Mount Everest. N Engl J Med. 1983;308:1135–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Rastogi GK, Malhotra MS, Srivastava MC, Shawhney RC, Dua GL, Sridharan K, et al. Study of the pituitary-thyroid function at high altitude in man. J Clin Endocrinol Metab. 1977;43:447–52.CrossRefGoogle Scholar
  66. 66.
    Hoyt RW, Honig A. Body fluid and energy metabolism at high altitude. In: Fregley MJ, Blatteis CM, editors. Handbook of physiology, section 4: environmental physiology. New York: Oxford University Press; 1996. p. 1277–89.Google Scholar
  67. 67.
    Galbo H, Holst JJ, Christensen NJ. The effect of different diets and of insulin on the hormonal response to prolonged exercise. Acta Physiol Scand. 1979;107(1):19–32.PubMedCrossRefGoogle Scholar
  68. 68.
    Phinney SD, Horton ES, Sims EA, Hanson JS, Danforth E, LaGrange BM. Capacity for moderate exercise in obese subjects after adaptation to a hypocaloric, ketogenic diet. J Clin Invest. 1980;66(5):1152–61.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Jezova-Repcekova D, Vigas M, Klimes I. Decreased plasma cortisol response to pharmacological stimuli after glucose load in man. Endocrinol Exp. 1980;14(2):113–20.PubMedGoogle Scholar
  70. 70.
    Bonen A, Belcastro AN, MacIntyre K, Gardner J. Hormonal responses during intense exercise preceded by glucose ingestion. Can J Appl Sport Sci. 1980;5(2):85–90.PubMedGoogle Scholar
  71. 71.
    Ivy J, Portman R. Nutrient timing system: the revolutionary new system that adds the missing dimension to sports nutrition: the dimension of time. North Bergen: Basic Health; 2004. p. 33–67.Google Scholar
  72. 72.
    Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, et al. International Society of Sports Nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008;5:17–29.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bishop NC, Blannin AK, Robson PJ, Walsh NP, Gleeson M. The effects of carbohydrate supplementation on immune responses to a soccer-specific exercise protocol. J Sports Sci. 1999;17(10):787–96.PubMedCrossRefGoogle Scholar
  74. 74.
    Bishop NC, Gleeson M, Nicholas CW, Ali A. Influence of carbohydrate supplementation on plasma cytokine and neutrophil degranulation responses to high intensity intermittent exercise. Int J Sport Nutr Exerc Metab. 2002;12(2):145–56.PubMedCrossRefGoogle Scholar
  75. 75.
    Lancaster GI, Jentjens RL, Moseley L, Jeukendrup AE, Gleeson M. Effect of pre-exercise carbohydrate ingestion on plasma cytokine, stress hormone, and neutrophil degranulation responses to continuous, high-intensity exercise. Int J Sport Nutr Exerc Metab. 2003;13(4):436–53.PubMedCrossRefGoogle Scholar
  76. 76.
    Rokitzki L, Logemann E, Huber G, Keck E, Keul J. Alpha-Tocopherol supplementation in racing cyclists during extreme endurance training. Int J Sport Nutr. 1994;4(3):253–64.PubMedCrossRefGoogle Scholar
  77. 77.
    Nieman DC. Influence of carbohydrate on the immune response to intensive, prolonged exercise. Exerc Immunol Rev. 1998;4:64–76.PubMedGoogle Scholar
  78. 78.
    Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL, et al. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol. 2003;94(5):1917–25.PubMedCrossRefGoogle Scholar
  79. 79.
    Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001;281(2):E197–206.PubMedCrossRefGoogle Scholar
  80. 80.
    Hsu MC, Chien KY, Hsu CC, Chung CJ, Chan KH, Su B. Effects of BCAA, arginine and carbohydrate combined drink on post-exercise biochemical response and psychological condition. Chin J Physiol. 2011;54(2):71–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Betts JA, Beelen M, Stokes KA, Saris WH, van Loon LJ. Endocrine responses during overnight recovery from exercise: impact of nutrition and relationships with muscle protein synthesis. Int J Sport Nutr Exerc Metab. 2011;21(5):398–409.PubMedCrossRefGoogle Scholar
  82. 82.
    La Bounty PM, Campbell BI, Wilson J, Galvan E, Berardi J, Kleiner SM, et al. International Society of Sports Nutrition position stand: meal frequency. J Int Soc Sports Nutr. 2011;8:4.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Schwarz NA, Rigby BR, La Bounty P, Shelmadine B, Bowden RG. A review of weight control strategies and their effects on the regulation of hormonal balance. J Nutr Metab. 2011;2011:237932.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Støving RK, Hangaard J, Hansen-Nord M, Hagen C. A review of endocrine changes in anorexia nervosa. J Psychiatr Res. 1999;33(2):139–52.PubMedCrossRefGoogle Scholar
  85. 85.
    Casper RC. Recognizing eating disorders in women. Psychopharmacol Bull. 1998;34(3):267–9.PubMedGoogle Scholar
  86. 86.
    Södersten P, Bergh C, Zandian M. Psychoneuroendocrinology of anorexia nervosa. Psychoneuroendocrinology. 2006;31(10):1149–53.PubMedCrossRefGoogle Scholar
  87. 87.
    VanHelder T, Radomski MW. Sleep deprivation and the effect on exercise performance. Sports Med. 1989;7:235–47.PubMedCrossRefGoogle Scholar
  88. 88.
    Aakvaag A, Bentdal O, Quigstad K, Walstad P, Ronningen H, Fonnum F. Testosterone and testosterone binding globulin (TeBG) in young men during prolonged stress. Int J Androl. 1978;1:22–31.CrossRefGoogle Scholar
  89. 89.
    Aakvaag A, Sand T, Opstad PO, Fonnum F. Hormonal changes in serum in young men during prolonged physical strain. Eur J Appl Physiol. 1978;39:283–91.CrossRefGoogle Scholar
  90. 90.
    Diamond P, Brisson GR, Candas B, Peronnet F. Trait anxiety, submaximal physical exercise and blood androgens. Eur J Appl Physiol. 1989;58:699–704.CrossRefGoogle Scholar
  91. 91.
    Hackney AC, Feith S, Pozos R, Seale J. Effects of high altitude and cold exposure on resting thyroid hormone concentrations. Aviat Space Environ Med. 1995;66:325–9.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Viru A, Hackney AC, Valja E, Karelson K, Janson T, Viru M. Influence of prolonged continuous exercise on hormonal responses to subsequent intensive exercise. Eur J Appl Physiol. 2001;85:578–85.PubMedCrossRefGoogle Scholar
  93. 93.
    Hackney AC. The neuro-endocrine system, overload training, and regeneration. In: Lehmann M, editor. Ulm international conference proceeding: performance, overload training and regeneration. London: Plenum; 1999. p. 173–86.Google Scholar
  94. 94.
    Viru A, Karelson K, Smirnova T. Stability and variability in hormonal responses to prolonged exercise. Int J Sports Med. 1992;13:230–5.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hartley LH, Mason JW, Hogan RP, Jones LG, Kotchen TA, Mougey EH, et al. Multiple hormonal responses to graded exercise in relation to physical training. J Appl Physiol. 1972;33(5):602–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Richter EA, Sutton JR. Hormonal adaptation to physical activity. In: Bouchard C, Shephard RJ, Stephen T, editors. Physical activity, fitness and health: international proceedings and consensus statement. Champaign: Human Kinetics; 1994. p. 331–42.Google Scholar
  97. 97.
    Luger A, Deuster PA, Kyle SB, Gallucci WT, Montgomery LC, Gold PW. Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise: physiologic adaptations to physical training. N Engl J Med. 1987;316:1309–15.CrossRefGoogle Scholar
  98. 98.
    Hackney AC, Sinning WE, Brout BC. Comparison of resting reproductive hormonal profiles in endurance trained and untrained men. Med Sci Sports Exerc. 1988;20(1):60–5.CrossRefGoogle Scholar
  99. 99.
    Remes K, Kuoppasalmi K, Adlercreutz H. Effect of long-term physical training on plasma testosterone, androstenedione, luteinizing hormone and sex-hormone binding globulin capacity. Sacnd J Clin Lab Invest. 1979;39:743–9.CrossRefGoogle Scholar
  100. 100.
    Hakkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl Physiol. 1993;74:882–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Hackney AC, Aggon E. Chronic low testosterone levels in endurance trained men: the exercise-hypogonadal male condition. J Biochem Physiol. 2018;1(1):pii: 103.Google Scholar
  102. 102.
    Westendorp RG, Roos AN, Riley LC, Walma S, Frolich M, Mienders AE. Chronic stimulation of atrial natriuretic peptide attenuates the secretory responses to postural changes. Am J Med Sci. 1993;306:371–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Fawcett JK, Wynn V. Effects of posture on plasma volume and some blood constituents. J Clin Pathol. 1960;13:304–13.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chen YM, Cintron NM, Whitson PA. Long term storage of salivary cortisol samples at room temperature. Clin Chem. 1992;38:304.PubMedCrossRefGoogle Scholar
  105. 105.
    Calam RR. Reviewing the importance of specimen collection. J Am Med Technol. 1977;38:297–300.Google Scholar
  106. 106.
    Sanntag O. Hemolysis as interference factor in clinical chemistry. J Clin Chem Clin Biochem. 1986;24:575–7.Google Scholar
  107. 107.
    Obminski Z, Klusiewicz A, Stupnicki R. Changes in salivary and serum cortisol concentrations in junior athletes following exercises of different intensities. Biol Sport. 1994;11:49–57.Google Scholar
  108. 108.
    Caraway WT. Chemical and diagnostic specificity of laboratory tests. Am J Clin Pathol. 1961;37:445–64.CrossRefGoogle Scholar
  109. 109.
    Kopchick JJ, Sackman-Sala L, Ding J. Primer: molecular tools used for the understanding of endocrinology. Nat Clin Pract Endocrinol Metab. 2007;3(4):355–68.PubMedCrossRefGoogle Scholar
  110. 110.
    Bowers LD. Analytical advances in detection of performance enhancing compounds. Clin Chem. 1997;43:1299–304.PubMedCrossRefGoogle Scholar
  111. 111.
    Dudley RF. Chemiluminescence immunoassay: an alternative to RIA. Lab Med. 1990;21:216–22.CrossRefGoogle Scholar
  112. 112.
    Shah VP, Midha KK, Findlay JWA, Hill HM, Hulse JD, McGilveray IJ, et al. Bioanalytic method validation - a revisit with a decade of progress. Pharm Res. 2000;17:1551–7.PubMedCrossRefGoogle Scholar
  113. 113.
    DeRonde W, Van Der Schouw YT, Pols HAP, Gooren LJG, Muller M, Grobbee DE, et al. Calculation of bioavailable and free testosterone in men: a comparison of 5 published algorithms. Clin Chem. 2006;52(9):1777–84.CrossRefGoogle Scholar
  114. 114.
    Rosner W, Auchus RJ, Azziz R, Sluss PM, Raff H. Position statement: utility, limitations and pitfalls in measuring testosterone: an Endocrine Society position statement. J Clin Endocrinol Metab. 2007;92:405–13.PubMedCrossRefGoogle Scholar
  115. 115.
    Rodbard D. Statistical quality control and routine data processing for radioimmunoassay and immunoradiometric assays. Clin Chem. 1974;20(10):1255–70.PubMedCrossRefGoogle Scholar
  116. 116.
    Fraser CG, Harris EK. Generation and application of data on biological variation in clinical chemistry. Crit Rev Clin Lab Sci. 1989;27:409–37.PubMedCrossRefGoogle Scholar
  117. 117.
    Hackney AC, Premo MC, McMurray RG. Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men. J Sports Sci. 1995;13(4):305–11.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Veldhuis JD, Johnson ML. Deconvolution analysis of hormone data. Methods Enzymol. 1992;210:539–75.PubMedCrossRefGoogle Scholar
  119. 119.
    Kingle RD, Johnson GF. Statistical procedures. In: Tietz NW, editor. Textbook of clinical chemistry. Philadelphia: Saunders; 1986. p. 287–355.Google Scholar
  120. 120.
    Pincus SM, Hartman ML, Roelfsema F, Thorner MO, Veldhuis JD. Hormone pulsatility discrimination via course and short time sampling. Am J Physiol Endocrinol Metab. 1999;277:E948–57.CrossRefGoogle Scholar
  121. 121.
    Matthews DR. Time series analysis in endocrinology. Acta Paediatr Scand Suppl. 1988;347:55–62.PubMedGoogle Scholar
  122. 122.
    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15.PubMedCrossRefGoogle Scholar
  123. 123.
    Mohammadreza H, Xu G. A visitor’s guide to effect sizes—statistical significance versus practical (clinical) importance of research findings. Adv Health Sci Educ Theory Pract. 2004;9(3):1573–7.Google Scholar
  124. 124.
    Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Englewood: Lawrence Erlbaum; 1988. p. 116–73.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anthony C. Hackney
    • 1
    Email author
  • Abbie E. Smith-Ryan
    • 2
  • Julius E. Fink
    • 3
  1. 1.Department of Exercise & Sport Science, Department of NutritionUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Exercise & Sport ScienceUniversity of North CarolinaChapel HillUSA
  3. 3.Juntendo University Graduate School of MedicineTokyoJapan

Personalised recommendations