Advertisement

Comparative Study Between Strain Gages for Determination of Autogenous Shrinkage

  • Paulo FrancineteJr.Email author
  • Eugênia Fonseca da Silva
  • Anne Neiry de Mendonça Lopes
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 24)

Abstract

The Carlson-type strain gages are the most suitable for the measurement of autogenous shrinkage. However, your high cost is usually a limiting factor for your employment. A more economical alternative would be the use of Self-Temperature-Compensation Gages to be embedded in concrete. The main objective of this work was to verify if Self Temperature-Compensation Gages can be used instead of the Carlson type for the determination of the autogenous shrinkage in high performance concrete. It was carried out measurements of the autogenous shrinkage, for the same concrete mix, using the two types of extensometers. The difference in the means of the autogenous shrinkage results between these two types of extensometers was typically less than 10 × 10−6 m/m, showing that the Self-Temperature-Compensation Gage is an alternative to replace the Carlson type strain gage for the measurement of autogenous shrinkage of concrete.

Keywords

High strength concrete Autogenous shrinkage Carlson 

Notes

Acknowledgments

The authors thank the University of Brasilia, Furnas Central Hydropower S.A., the Federal Institute of Goias (IFG), the Coordination for the Improvement of Higher Education Personnel (Capes) and Natália Carvalho de Camargo.

References

  1. ABNT: NBR 5733: Cimento Portland de alta resistência inicial, Brasil (1991)Google Scholar
  2. Aïtcin, P.C.: Autogenous shrinkage measurement. In: Proceedings of the International Workshop on Autogenous Shrinkage of Concrete, Hiroshima, Japan, pp. 245–256 (1998)Google Scholar
  3. American Society for Testing and Materials: ASTM C1698: Standard Test Method for Autogenous Strain of Cement Paste and Mortar, Philadelphia, USA, 8p. (2014)Google Scholar
  4. Andrade, W.P.: Concretos: massa, estrutural, projetado e compactado com rolo: ensaios e propriedades, 1st edn. Editora Pini, São Paulo, Brasil (1997)Google Scholar
  5. Carlson, R.W.: Carlson Strain Meters and Other Instruments for Embedment in Concrete Structures, 5th edn. RST Instruments Ltd., Canada (1995). Edited by Robert M. TaylorGoogle Scholar
  6. Cunha, T.A., Francinete, P., Agostinho, L.B., Silva, E.F, Lopes, A.N.: Study of the autogenous shrinkage in microconcretes containing superabsorbent polymer and nano-silica. In: 2nd International RILEM/COST Conferece on Early Age Cracking and Serviceability in Cement-Based Materials and Structures, Brussels, Belgium, pp. 251–256 (2017)Google Scholar
  7. Francinete Jr., P., Silva, E.F., Lopes, A.N.M.: Estudo comparativo entre o emprego dos extensômetros do tipo Carlson e do tipo de temperatura auto compensável para determinação da retração autógena. Revista Matéria, v. 23, n. 3. UFRJ, Rio de Janeiro, Brasil (2018)Google Scholar
  8. Furnas: IT.MC.201 Concreto – Determinação da variação autógena. Instrução de Trabalho – Métodos Construtivos. Furnas Centrais Elétricas S.A. Gerência de Pesquisa, Serviços e Inovação Tecnológica, Aparecida de Goiânia, Brasil (2015)Google Scholar
  9. Gomes, F.P.: Curso de estatística experimental. USP, ed. 10, Piracicaba, Brasil (1982)Google Scholar
  10. Hanehara, S., Hirao, H., Uchikawa, H.: Relationships between autogenous shrinkage, the microstructure and humidity changes at inner part of hardened cement paste at early ages. In: Proceedings of the International Workshop on Autogenous Shrinkage of Concrete, Hiroshima, Japan, pp. 89–100 (1998)Google Scholar
  11. Jensen, O.M., Hansen, P.F.: A dilatometer for measuring autogenous deformation in hardening Portland cement paste. Mater. Struct. 28(7), 406–409 (1995)CrossRefGoogle Scholar
  12. Kojima, T., Takagi, N., Horikawa, S.: Study on shrinkage characteristics of high-strength silica fume concrete. In: Proceedings of Seventh CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Chennai, India, pp. 719–735 (2001)Google Scholar
  13. Lopes, A.N.M.: Mitigação da retração autógena em concretos de alta resistência contendo aditivo redutor de retração e seus efeitos na macro e microestrutura. Tese de D.Sc., Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Curso de Pós-graduação em Engenharia Civil, Porto Alegre, Brasil (2011)Google Scholar
  14. Manzano, M.A.R.: Estudo Experimental de Materiais Cimentícios de Alta Resistência modificados com Polímeros Superabsorventes (PSAs) como Agentes de Cura Interna. Tese de D.Sc., Universidade de Brasília. Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, Brasília, Brasil (2016)Google Scholar
  15. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 3rd edn. Wiley, Hoboken (2003)zbMATHGoogle Scholar
  16. Silva, E.F.: Variações dimensionais em concretos de alto desempenho contendo aditivo redutor de retração. Tese de D.Sc., COPPE/UFRJ, Rio de Janeiro, Brasil (2007)Google Scholar
  17. Silva, E.F., Manzano, M.A.R., Lopes, A.N.M., Toledo Filho, R.D.: Effect of SAP on the autogenous shrinkage and compressive strength of high-strength fine-grained concrete. In: International RILEM Conference on Application of Superabsorbent Polymers and Other New Admixtures in Concrete Construction, Dresden, pp. 211–219 (2014)Google Scholar
  18. Tazawa, E.: Technical committee on autogenous shrinkage of concrete – committee report. In: Tazawa, E.-C. (ed.) Autogenous Shrinkage of Concrete – Proceedings of the International Workshop organized by Japan Concrete Institute. E & FN Spon, London (1999)Google Scholar
  19. Tazawa, E., Miyazawa, S.: Effect of constituents and curing condition on autogenous shrinkage of concrete. In: Tazawa, E.-C. (ed.) Autogenous Shrinkage of Concrete – Proceedings of the International Workshop organized by Japan Concrete Institute, pp. 269–280. E & FN Spon, London (1999)Google Scholar

Copyright information

© RILEM 2020

Authors and Affiliations

  • Paulo FrancineteJr.
    • 1
    Email author
  • Eugênia Fonseca da Silva
    • 2
  • Anne Neiry de Mendonça Lopes
    • 3
  1. 1.Instituto Federal de GoiásGoiâniaBrazil
  2. 2.Universidade de Brasília – PECC/UnBBrasília - DFBrazil
  3. 3.Furnas Centrais Elétricas – GSTAparecida de GoiâniaBrazil

Personalised recommendations