Advertisement

Direct Numerical Simulations of Evaporating Droplets at Higher Temperatures: Application of a Consistent Numerical Approach

  • Karin SchlottkeEmail author
  • Jonathan Reutzsch
  • Corine Kieffer-Roth
  • Bernhard Weigand
Conference paper
  • 81 Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 121)

Abstract

A method for the numerical simulation of three-dimensional evaporation processes is applied to the evaporation process of isooctane droplets under slow inflow conditions and to the evaporation of a water droplet tandem in quiescent air. The method is a thermodynamically consistent numerical framework and was developed for the requirements of the evaporation of hot, liquid droplets. It is implemented into the in-house multi-phase code FS3D, which uses a Direct Numerical Simulation approach based on the Volume-of-Fluid method. Three different simulation cases are presented for the isooctane droplets and their results are in good agreement with literature correlations. The influence of the near drop neighbourhood can be observed in the simulation of the water droplet tandem.

Notes

Acknowledgements

The research was carried out in the framework of the industrial collective research programme (IGF no. 19320 N/2). It was supported by the Federal Ministry for Economic Affairs and Energy (BMWi) through the AiF (German Federation of Industrial Research Associations eV) based on a decision taken by the German Bundestag. We thank the High Performance Computing Centre Stuttgart (HLRS) for support and supply of computational time on the Cray XC40 platform under Grant No. FS3D/11142.

References

  1. 1.
    Cossali, G., Tonini, S.: Variable gas density effects on transport from interacting evaporating spherical drops. Int. J. Heat Mass Transfer 127, 485–496 (2018)Google Scholar
  2. 2.
    Eisenschmidt, K., Ertl, M., Gomaa, H., Kieffer-Roth, C., Meister, C., Rauschenberger, P., Reitzle, M., Schlottke, K., Weigand, B.: Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D. J. Appl. Math. Comput. 272(2), 508–517 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hase, M.: Numerische berechnung dreidimensionaler transportvorgänge an angeströmten, sich verformenden tropfen. Ph.D. thesis, Universität Stuttgart (2005)Google Scholar
  4. 4.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)CrossRefGoogle Scholar
  5. 5.
    Kays, W., Crawford, M., Weigand, B.: Convective Heat and Mass Transfer, 4th edn. McGraw-Hill (2004)Google Scholar
  6. 6.
    Kulmala, M., Vesala, T., Schwarz, J., Smolik, J.: Mass-transfer from a drop 2. Theoretical-analysis of temperature-dependent mass flux correlation. Int. J. Heat Mass Transfer 38(9), 1705–1708 (1995)Google Scholar
  7. 7.
    Lemmon, E.W., Bell, I., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 10.0. National Institute of Standards and Technology (2018).  https://doi.org/10.18434/T4JS3C
  8. 8.
    Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill (2000)Google Scholar
  9. 9.
    Ranz, W.E., Marshall, W.R.: Evaporation from drops: Part 1. Chem. Eng. Prog. 48(3), 141–146 (1952)Google Scholar
  10. 10.
    Ranz, W.E., Marshall, W.R.: Evaporation from drops: Part 2. Chem. Eng. Prog. 48(4), 173–180 (1952)Google Scholar
  11. 11.
    Rauschenberger, P., Weigand, B.: Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework. J. Comput. Phys. 291, 238–253 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Reitzle, M., Kieffer-Roth, C., Garcke, H., Weigand, B.: A volume-of-fluid method for three-dimensional hexagonal solidification processes. J. Comput. Phys. 339, 356–369 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Reitzle, M., Ruberto, S., Stierle, R., Gross, J., Janzen, T., Weigand, B.: Direct numerical simulation of sublimating ice particles. Int. J. Therm. Sci. 145, (2019).  https://doi.org/10.1016/j.ijthermalsci.2019.05.009
  14. 14.
    Renksizbulut, M., Nafziger, R., Li, X.G.: A mass-transfer correlation for droplet evaporation in high-temperature flows. Chem. Eng. Sci. 46(9), 2351–2358 (1991)CrossRefGoogle Scholar
  15. 15.
    Reutzsch, J., Kieffer-Roth, C., Weigand, B.: A consistent method for direct numerical simulation of droplet evaporation. J. Comput. Phys. (submitted)Google Scholar
  16. 16.
    Rieber, M.: Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen. Dissertation, Universität Stuttgart (2004)Google Scholar
  17. 17.
    Schlottke, J.: Direkte Numerische Simulation von Mehrphasenströmumgen mit Phasenübergang. Ph.D. thesis, Universität Stuttgart (2010)Google Scholar
  18. 18.
    Schlottke, J., Rauschenberger, P., Weigand, B., Ma, C., Bothe, D.: Volume of fluid direct numerical simulation of heat and mass transfer using sharp temperature and concentration fields. In: ILASS - Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, Portugal (2011). http://www.ilass.uci.edu/
  19. 19.
    Schlottke, J., Weigand, B.: Direct numerical simulation of evaporating droplets. J. Comput. Phys. 10, 5215–5237 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schwarz, J., Smolik, J.: Mass-transfer from a drop 1. Experimental-study and comparison with existing correlations. Int. J. Heat Mass Transfer 37(14), 2139–2143 (1994)Google Scholar
  21. 21.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Karin Schlottke
    • 1
    Email author
  • Jonathan Reutzsch
    • 1
  • Corine Kieffer-Roth
    • 1
  • Bernhard Weigand
    • 1
  1. 1.Institute of Aerospace Thermodynamics (ITLR)University of StuttgartStuttgartGermany

Personalised recommendations