Advertisement

On the Importance of Kinetic Effects in the Modelling of Droplet Evaporation at High Pressure and Temperature Conditions

  • Grazia LamannaEmail author
  • Christoph Steinhausen
  • Bernhard Weigand
Conference paper
  • 76 Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 121)

Abstract

This work analyses whether the inclusion of interfacial temperature jumps is necessary in the modelling of droplet evaporation at high pressure. The analysis is divided into two parts. First, we revise the major findings from theoretical models and molecular dynamics simulations on the conditions leading to the inception of interfacial jumps and the main parameters affecting them. Second, an evaporation model is considered that includes a diffuse transition layer (Knudsen layer), in the order of a few mean free paths around the droplet, where transport processes are described by kinetic molecular theory. The analysis shows that discontinuities in temperature and chemical potential across the interface are important when molecular collisions control transport processes and result in large heat and mass fluxes. This may occur not only at low pressures, but also at high pressures and temperatures for conditions sufficiently far from global thermodynamic equilibrium and/or for sufficiently small droplets. On a macroscopic scale, the resulting correction to the boundary conditions for classical diffusion-controlled models may be significant at high evaporation rates.

Notes

Acknowledgements

The authors thank the German Research Foundation (DFG) for financial support through the collaborative research center Droplet Dynamics Under Extreme Ambient Conditions (SFB-TRR 75, project number 84292822).

References

  1. 1.
    Badam, V.K., Kumar, V., Durst, F., Danov, K.: Experimental and theoretical investigations on interfacial temperature jumps during evaporation. Exp. Therm. Fluid Sci. 32(1), 276–292 (2007)CrossRefGoogle Scholar
  2. 2.
    Fang, G., Ward, C.A.: Temperature measured close to the interface of an evaporating liquid. Phys. Rev. E. 59(1), 417–428 (1999)CrossRefGoogle Scholar
  3. 3.
    Gatapova, E.Y., Graur, I.A., Kabov, O.A., Aniskin, V.M., Filipenko, M.A., Sharipov, F., Tadrist, L.: The temperature jump at water–air interface during evaporation. Int. J. Heat Mass Transfer 104, 800–812 (2017)CrossRefGoogle Scholar
  4. 4.
    Ge, J., Kjelstrup, S., Bedeaux, D., Simon, J.M., Rousseau, B.: Transfer coefficients for evaporation of a system with a Lennard-Jones long-range spline potential. Phys. Rev. E. 75, 061604 (2007).  https://doi.org/10.1103/PhysRevE.75.061604
  5. 5.
    Han, X., Han, Z., Zeng, W., Qian, J., Wang, Z.: Coupled model of heat and mass balance for droplet growth in wet steam non-equilibrium homogeneous condensation flow. Energies 10, 2033 (2017)CrossRefGoogle Scholar
  6. 6.
    Ishiyama, T., Takeru, Y., Fujikawa, S.: Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase. Phys. Fluids 16, 4713–4726 (2004)CrossRefGoogle Scholar
  7. 7.
    Jafari, P., Amritkar, A., Ghasemi, H.: On temperature discontinuity at an evaporating water interface (2019)Google Scholar
  8. 8.
    James, R.A.: Onsager heat of transport at the liquid-vapour interface of glycerol-water solutions. Master’s thesis, University of Canterbury (2007)Google Scholar
  9. 9.
    James, R.A., Phillips, L.F.: Onsager heat of transport for water vapour at the surface of glycerol-water mixtures. Chem. Phys. Lett. 425, 49–52 (2006)CrossRefGoogle Scholar
  10. 10.
    Kazemi, M.A., Nobes, D.S., Elliott, J.A.W.: Effect of the thermocouple on measuring the temperature discontinuity at a liquid-vapor interface. Langmuir 33, 7169–7180 (2017)CrossRefGoogle Scholar
  11. 11.
    Kjelstrup, S., Tsuruta, T., Bedeaux, D.: The inverted temperature profile across a vapor/liquid surface analyzed by molecular computer simulations. J. Colloid Interface Sci. 256(2), 451–461 (2002).  https://doi.org/10.1006/jcis.2002.8684CrossRefGoogle Scholar
  12. 12.
    Kobayashi, K., Hori, K., Kon, M., Sasaki, K., Watanabe, M.: Molecular dynamics study on evaporation and reflection of monatomic molecules to construct kinetic boundary condition in vapor-liquid equilibria. Heat Mass Transfer 52, 1851–1859 (2016)CrossRefGoogle Scholar
  13. 13.
    Kobayashi, K., Sasaki, K., Kon, M., Fujii, H., Watanabe, M.: Kinetic boundary conditions for vapor-gas binary mixture. Microfluid. Nanofluid. 21, 53 (2017)CrossRefGoogle Scholar
  14. 14.
    Kon, M., Kobayashi, K., Watanabe, M.: Method of determining kinetic boundary conditions in net evaporation/condensation. Phys. Fluids 26, 072003 (2014)CrossRefGoogle Scholar
  15. 15.
    Kon, M., Kobayashi, K., Watanabe, M.: Liquid temperature dependence of kinetic boundary conditions in vapor-liquid interface. Int. J. Heat Mass Transfer 99, 317–326 (2016)CrossRefGoogle Scholar
  16. 16.
    Kon, M., Kobayashi, K., Watanabe, M.: Kinetic boundary conditions in vapor-liquid two-phase system during unsteady net evaporation/condensation. Eur. J. Mech. B/Fluids 64, 81–92 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lamanna, G., Steinhausen, C., Weigand, B., Preusche, A., Bork, B., Dreizler, A., Stierle, R., Groß, J.: On the importance of non-equilibrium models for describing the coupling of heat and mass transfer at high pressure. Int. Commun. Heat Mass Transfer 98, 49–58 (2018).  https://doi.org/10.1016/j.icheatmasstransfer.2018.07.012CrossRefGoogle Scholar
  18. 18.
    Langmuir, I.: The dissociation of hydrogen into atoms. [Part II] calculation of the degree of dissociation and the heat of formation. J. Am. Chem. Soc. 37, 417–458 (1915)Google Scholar
  19. 19.
    Luijten, C.C.M.: Nucleation and droplet growth at high pressure. Ph.D. thesis, Eindhoven University of Technology (1998)Google Scholar
  20. 20.
    Mills, C.T., Phillips, L.F.: Onsager heat of transport at the aniline-vapour interface. Chem. Phys. Lett. 366, 279–283 (2002)CrossRefGoogle Scholar
  21. 21.
    Onishi, Y.: The spherical-droplet problem of evaporation and condensation in a vapour-gas mixture. J. Fluid Mech. 163, 171–194 (1986)CrossRefGoogle Scholar
  22. 22.
    Peeters, P., Luijten, C.C.M., van Dongen, M.E.H.: Transitional droplet growth and diffusion coefficients. Int. J. Heat Mass Transfer 44, 181–193 (2001)CrossRefGoogle Scholar
  23. 23.
    Peeters, P., Luijten, C.C.M., Hruby, J., van Dongen, M.E.H.: Multi-component droplet growth. i. experiments with supersaturated n-nonane vapor and water vapor in methane. Phys. Fluids 16, 2567 (2004)Google Scholar
  24. 24.
    Phillips, L.F.: Onsager heat of transport as a consequence of detailed balance at the gas-liquid interface. Chem. Phys. Lett. 396, 350–352 (2004)CrossRefGoogle Scholar
  25. 25.
    Polikarpov, A.P., Graur, I.A., Gatapova, E.Y., Kabov, O.A.: Kinetic simulation of the non-equilibrium effects at the liquid-vapor interface. Int. J. Heat Mass Transfer 136, 449–456 (2019)CrossRefGoogle Scholar
  26. 26.
    Qiao, L., Jain, S., Mo, G.: High Pressure Flows for Propulsion Applications, (to appear) Molecular Simulations to Research Supercritical Fuel Properties. Progress in Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics (AIAA) (2019)Google Scholar
  27. 27.
    Simon, J.M., Kjelstrup, S., Bedeaux, D., Hafskjold, B.: Thermal flux through a surface of n-octane. A non-equilibrium molecular dynamics study. J. Phys. Chem. B 108(22), 7186–7195 (2004).  https://doi.org/10.1021/jp0375719
  28. 28.
    Ward, C.A., Fang, G.: Expression for predicting liquid evaporation flux: statistical rate theory approach. Phys. Rev. E. 59(1), 429–440 (1999)CrossRefGoogle Scholar
  29. 29.
    White, A., Young, J., Walters, P.: Experimental validation of condensing flow theory for a stationary cascade of steam turbine blades. Philos. Trans. R. Soc. Lond. 354, 59–88 (1996)CrossRefGoogle Scholar
  30. 30.
    Xu, J., Kjelstrup, S., Bedeaux, D., Røsjorde, A., Rekvig, L.: Verification of Onsager’s reciprocal relations for evaporation and condensation using non-equilibrium molecular dynamics. J. Colloid Interface Sci. 299(1), 452–463 (2006).  https://doi.org/10.1016/j.jcis.2006.01.043. URL http://www.sciencedirect.com/science/article/pii/S0021979706000506
  31. 31.
    Young, J.B.: The condensation and evaporation of liquid droplets at arbitrary Knudsen number in the presence of an inert gas. Int. J. Heat Mass Transfer 36, 2941–2956 (1993)CrossRefGoogle Scholar
  32. 32.
    Zhakhovsky, V.V., Kryukov, A.P., Levashov, V.Y., Shishkova, I.N., Anisimov, S.I.: Mass and heat transfer between evaporation and condensation surfaces: atomistic simulation and solution of Boltzmann kinetic equation. Natl. Acad. Sci. (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Grazia Lamanna
    • 1
    Email author
  • Christoph Steinhausen
    • 1
  • Bernhard Weigand
    • 1
  1. 1.Institute of Aerospace Thermodynamics (ITLR)University of StuttgartStuttgartGermany

Personalised recommendations