Advertisement

Improvement of the Level-Set Ghost-Fluid Method for the Compressible Euler Equations

  • Christoph MüllerEmail author
  • Timon Hitz
  • Steven Jöns
  • Jonas Zeifang
  • Simone Chiocchetti
  • Claus-Dieter Munz
Conference paper
  • 76 Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 121)

Abstract

This paper describes improvements of a level-set ghost-fluid algorithm in the scope of sharp interface multi-phase flow simulations. The method is used to simulate drop-drop and shock-drop interactions. Both, the level-set and the bulk phases are discretized by a high order discontinuous Galerkin spectral element method. The multi-phase interface and shocks are captured with a finite volume sub-cell method. The first improvement, is the use of the finite-volume sub-cells to capture discontinuities in the level-set equation. This allows the simulation of merging droplets. The second improvement is the introduction of an increased polynomial degree for the level-set equation in comparison to the Euler equations. The goal of this modification is to reduce parasitic currents. Additionally, the whole method is validated against experimental results.

Notes

Acknowledgements

C. Müller, J. Zeifang and S. Chiocchetti were supported by the German Research Foundation (DFG) though the project GRK 2160/1 “Droplet Interaction Technologies”. T. Hitz and S. Jöns were supported by the DFG through the project SFB-TRR 75 "Droplet Dynamics Under Extreme Ambient Conditions". The simulations were performed on the national supercomputer Cray XC40 (Hazel Hen) at the High Performance Computing Center Stuttgart (HLRS) under the grant number hpcmphas/44084.

References

  1. 1.
    Adalsteinsson, D., Sethian, J.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148(1), 2–22 (1999).  https://doi.org/10.1006/jcph.1998.6090
  2. 2.
    Albadawi, A., Donoghue, D., Robinson, A., Murray, D., Delauré, Y.: Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. Int. J. Multiph. Flow 53, 11–28 (2013).  https://doi.org/10.1016/j.ijmultiphaseflow.2013.01.005CrossRefGoogle Scholar
  3. 3.
    Fechter, S.: Compressible multi-phase simulation at extreme conditions using a discontinuous Galerkin scheme (2015).  https://doi.org/10.18419/opus-3982
  4. 4.
    Fechter, S., Jaegle, F., Schleper, V.: Exact and approximate riemann solvers at phase boundaries. Comput. Fluids 75, 112–126 (2013).  https://doi.org/10.1016/j.compfluid.2013.01.024MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fechter, S., Munz, C.D.: A discontinuous galerkin-based sharp-interface method to simulate three-dimensional compressible two-phase flow. Int. J. Numer. Methods Fluids 78(7), 413–435 (2015).  https://doi.org/10.1002/fld.4022MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999).  https://doi.org/10.1006/jcph.1999.6236MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Föll, F., Hitz, T., Müller, C., Munz, C.D., Dumbser, M.: On the use of tabulated equations of state for multi-phase simulations in the homogeneous equilibrium limit. Shock Waves (2019).  https://doi.org/10.1007/s00193-019-00896-1
  8. 8.
    Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012).  https://doi.org/10.1016/j.compfluid.2012.03.006MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huerta, A., Casoni, E., Peraire, J.: A simple shock-capturing technique for high-order discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 69(10), 1614–1632 (2011).  https://doi.org/10.1002/fld.2654MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000).  https://doi.org/10.1137/s106482759732455xMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kopriva, D.A.: Spectral element methods. In: Scientific Computation, pp. 293–354. Springer, The Netherlands (2009).  https://doi.org/10.1007/978-90-481-2261-5_8
  12. 12.
    Liu, T., Khoo, B., Wang, C.: The ghost fluid method for compressible gas–water simulation. J. Comput. Phys. 204(1), 193–221 (2005).  https://doi.org/10.1016/j.jcp.2004.10.012MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, T., Khoo, B., Xie, W.: The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation. Commun. Comput. Phys. 1(5), 898–919 (2006)zbMATHGoogle Scholar
  14. 14.
    Merkle, C., Rohde, C.: The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques. ESAIM: Mathe. Model. Numer. Anal. 41(6), 1089–1123 (2007).  https://doi.org/10.1051/m2an:2007048
  15. 15.
    Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006).  https://doi.org/10.2514/6.2006-112
  16. 16.
    Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009).  https://doi.org/10.1016/j.jcp.2009.04.042MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Saurel, R., Petitpas, F., Abgrall, R.: Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607, (2008).  https://doi.org/10.1017/s0022112008002061
  18. 18.
    Schleper, V.: A HLL-type Riemann solver for two-phase flow with surface forces and phase transitions. Appl. Numer. Math. 108, 256–270 (2016).  https://doi.org/10.1016/j.apnum.2015.12.010MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sembian, S., Liverts, M., Tillmark, N., Apazidis, N.: Plane shock wave interaction with a cylindrical water column. Phys. Fluids 28(5), 056102 (2016).  https://doi.org/10.1063/1.4948274CrossRefGoogle Scholar
  20. 20.
    Sonntag, M., Munz, C.D.: Efficient parallelization of a shock capturing for discontinuous galerkin methods using finite volume sub-cells. J. Sci. Comput. 70(3), 1262–1289 (2016).  https://doi.org/10.1007/s10915-016-0287-5MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994).  https://doi.org/10.1006/jcph.1994.1155CrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, C.W., Liu, T.G., Khoo, B.C.: A real ghost fluid method for the simulation of multimedium compressible flow. SIAM J. Sci. Comput. 28(1), 278–302 (2006).  https://doi.org/10.1137/030601363MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christoph Müller
    • 1
    Email author
  • Timon Hitz
    • 1
  • Steven Jöns
    • 1
  • Jonas Zeifang
    • 1
  • Simone Chiocchetti
    • 2
  • Claus-Dieter Munz
    • 1
  1. 1.Institute of Aerodynamics and GasdynamicsStuttgartGermany
  2. 2.Department of Civil Environmental and Mechanical EngineeringLaboratory of Applied MathematicsTrentoItaly

Personalised recommendations