Horizontal Transfer of Cyclic di-GMP Associated Genes. Theoretical Underpinnings and Future Perspectives

  • Jonas Stenløkke MadsenEmail author


Cyclic diguanlylate (cyclic di-GMP) is a second messenger utilized by many bacteria to control a variety of phenotypes, such as motility, biofilm formation, and virulence. In the genomes of these bacteria, a notably large number of genes are found to encode proteins that not only respond to cyclic di-GMP, but also numerous that synthesize and/or degrade the second messenger. A number of such genes that are associated with cyclic di-GMP signaling are located on mobile genetic elements (MGEs) including plasmids, integrative and conjugative elements, bacteriophages, genomic islands, and transposons. These MGEs facilitate horizontal transfer between bacteria, making cyclic di-GMP associated genes available to many different hosts. This is curious because genes that are part of complex systems are normally regarded as improbable to be transferred horizontally.

Here the relationship between cyclic di-GMP signaling and horizontal gene transfer is examined. Many of the properties that make cyclic di-GMP signaling such an effective, energetically favorable, and diverse system for controlling multiple phenotypes, in addition to the modular nature of cyclic di-GMP associated genes, seems to make it uniquely fit for horizontal transfer. Effector proteins that respond to cyclic di-GMP levels should be able to enter a new genomic context with minimum disturbance as the cellular level of cyclic di-GMP is not affected. Contrarily, MGE-encoded proteins that alter the level of cyclic di-GMP may have detrimental effects on host fitness. However, it is plausible that proteins that alter the levels of cyclic di-GMP are transferred if they only are expressed or activated in response to specific clues. Alternatively, such proteins may act by enforcing phenotypes that selfishly enhance the evolutionary success of the MGE.


Mobile genetic elements Horizontal gene transfer Bis-(3′-5′)-cyclic dimeric guanosine monophosphate Cyclic di-GMP signaling Genomic conflict Recombination 



A big thank you to Prof. Søren J. Sørensen and Dr. Urvish Trivedi for valuable discussion and feedback writing this book chapter. This work was funded by the Lundbeckfonden (SHARE, R250-2017-1392).


  1. 1.
    Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679PubMedCrossRefGoogle Scholar
  2. 2.
    Welch RA et al (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99:17020–17024PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700PubMedCrossRefGoogle Scholar
  5. 5.
    Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Stahlhut SG, Struve C, Krogfelt KA, Reisner A (2012) Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol Med Microbiol 65:350–359PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yang J et al (2013) Transcriptional activation of the mrkA promoter of the Klebsiella pneumoniae type 3 fimbrial operon by the c-di-GMP-dependent MrkH protein. PLoS One 8:e79038PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Johnson JG, Clegg S (2010) Role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae. J Bacteriol 192:3944–3950PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Madsen JS et al (2016) Type 3 fimbriae encoded on plasmids are expressed from a unique promoter without affecting host motility, facilitating an exceptional phenotype that enhances conjugal plasmid transfer. PLoS One 11:e0162390PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Burmølle M, Norman A, Sørensen SJ, Hansen LH (2012) Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from Klebsiella pneumoniae. PLoS One 7:e41259PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Werren JH (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci U S A 108:10863–10870PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Dawkins R (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  13. 13.
    Madsen JS, Burmølle M, Hansen LH, Sørensen SJ (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65:183–195PubMedCrossRefGoogle Scholar
  14. 14.
    Burmølle M, Bahl MI, Jensen LB, Sørensen SJ, Hansen LH (2008) Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology 154:187–195PubMedCrossRefGoogle Scholar
  15. 15.
    Madsen JS et al (2018) An intriguing relationship between the cyclic diguanylate signaling system and horizontal gene transfer. ISME J 12:2330–2334PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Madsen JS, Burmølle M, Sørensen SJ (2013) A spatiotemporal view of plasmid loss in biofilms and planktonic cultures. Biotechnol Bioeng 110:3071–3074PubMedCrossRefGoogle Scholar
  17. 17.
    Wozniak RA, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552PubMedCrossRefGoogle Scholar
  18. 18.
    Bordeleau E, Brouillette E, Robichaud N, Burrus V (2010) Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ Microbiol 12:510–523PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sudarsan N et al (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Richter AM, Povolotsky TL, Wieler LH, Hengge R (2014) Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104: H4. EMBO Mol Med 6:1622–1637PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hyde DR, Tu C-P (1985) tnpM: a novel regulatory gene that enhances Tn21 transposition and suppresses cointegrate resolution. Cell 42:629–638PubMedCrossRefGoogle Scholar
  23. 23.
    Kulesekara H et al (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103:2839–2844PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    He J et al (2004) The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A 101:2530–2535PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740PubMedCrossRefGoogle Scholar
  26. 26.
    Povolotsky TL, Hengge R (2012) Life-style’control networks in Escherichia coli: signaling by the second messenger c-di-GMP. J Biotechnol 160:10–16PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Sci U S A 96:3801–3806CrossRefGoogle Scholar
  29. 29.
    Aris-Brosou S (2004) Determinants of adaptive evolution at the molecular level: the extended complexity hypothesis. Mol Biol Evol 22:200–209PubMedCrossRefGoogle Scholar
  30. 30.
    Popa O, Hazkani-Covo E, Landan G, Martin W, Dagan T (2011) Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res 21(4):599–609PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Leigh JW, Schliep K, Lopez P, Bapteste E (2011) Let them fall where they may: congruence analysis in massive phylogenetically messy data sets. Mol Biol Evol 28:2773–2785PubMedCrossRefGoogle Scholar
  32. 32.
    Lercher MJ, Pál C (2007) Integration of horizontally transferred genes into regulatory interaction networks takes many million years. Mol Biol Evol 25:559–567PubMedCrossRefGoogle Scholar
  33. 33.
    Wellner A, Lurie MN, Gophna U (2007) Complexity, connectivity, and duplicability as barriers to lateral gene transfer. Genome Biol 8:R156PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cohen O, Gophna U, Pupko T (2010) The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol Biol Evol 28:1481–1489PubMedCrossRefGoogle Scholar
  35. 35.
    Rybtke MT et al (2012) A fluorescence-based reporter of cyclic di-GMP levels in Pseudomonas aeruginosa. Appl Environ Microbiol 78(15):5060–5069PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Romero-Jiménez L, Rodríguez-Carbonell D, Gallegos MT, Sanjuán J, Pérez-Mendoza D (2015) Mini-Tn 7 vectors for stable expression of diguanylate cyclase PleD∗ in Gram-negative bacteria. BMC Micorbiol 15:190CrossRefGoogle Scholar
  37. 37.
    Bordeleau E, Fortier L-C, Malouin F, Burrus V (2011) c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet 7:e1002039PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Baltrus DA (2013) Exploring the costs of horizontal gene transfer. Trends Ecol Evol 28:489–495PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Park C, Zhang J (2012) High expression hampers horizontal gene transfer. Genome Biol Evol 4:523–532PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mills E, Pultz IS, Kulasekara HD, Miller SI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13:1122–1129PubMedCrossRefGoogle Scholar
  41. 41.
    Chan CX, Darling AE, Beiko RG, Ragan MA (2009) Are protein domains modules of lateral genetic transfer? PLoS One 4:e4524PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Schirmer T (2016) C-di-GMP synthesis: structural aspects of evolution, catalysis and regulation. J Mol Biol 428:3683–3701PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Popa O, Dagan T (2011) Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol 14:615–623PubMedCrossRefGoogle Scholar
  44. 44.
    Cohen O, Gophna U, Pupko T (2013) Lateral gene transfer in evolution. Springer, pp 137–145Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Section of Microbiology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations