Advertisement

Cyclic di-GMP and the Regulation of Biofilm Dispersion

  • Karin SauerEmail author
Chapter
  • 109 Downloads

Abstract

In nature, bacteria are primarily found as residents of surface-associated communities called biofilms. The formation of biofilms is a cyclical process that is initiated by single planktonic cells attaching to a surface, and comes full cycle when cells disperse from the mature biofilm to resume a planktonic lifestyle. Dispersion occurs in response to various signals and environmental cues, and results in surface-attached organisms liberating themselves from matrix-encased biofilms, apparent by single cells actively escaping from the biofilm, leaving behind eroded biofilms and microcolonies having central voids. Given the cyclic process of biofilm formation, it is not surprising that dispersion, like biofilm formation, is coincident with significant changes in the levels of the second messenger cyclic di-GMP. However, dispersion is not simply a reversion from the biofilm lifestyle to the planktonic mode of growth, as dispersed cells have been described as having a phenotype that is distinct from planktonic and biofilm cells. Using primarily the pathogen P. aeruginosa as example, this chapter provides an up-to-date compendium of cyclic di-GMP pathways connected to biofilm dispersion, including how sensing a diverse array of dispersion cues leads to the destruction of cyclic di-GMP, the escape from the biofilm matrix, and the appropriate phenotypic responses associated with dispersed cells.

Keywords

Dispersion Cyclic di-GMP Motility Susceptibility Virulence cis-DA Extracellular dispersion cues Dispersion cue perception Signal relay Matrix degradative enzymes 

References

  1. 1.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322CrossRefGoogle Scholar
  2. 2.
    Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23:1733–1736CrossRefGoogle Scholar
  3. 3.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefGoogle Scholar
  4. 4.
    Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154CrossRefGoogle Scholar
  5. 5.
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209.  https://doi.org/10.1146/annurev.micro.56.012302.160705 CrossRefGoogle Scholar
  6. 6.
    Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78CrossRefGoogle Scholar
  7. 7.
    Davies DG (2011) Biofilm dispersion. In: Biofilm highlights. Springer, Berlin, pp 1–28Google Scholar
  8. 8.
    Purevdorj-Gage B, Costerton WJ, Stoodley P (2005) Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 151(5):1569–1576.  https://doi.org/10.1099/mic.0.27536-0 CrossRefPubMedGoogle Scholar
  9. 9.
    Davies DG (1999) Regulation of matrix polymer in biofilm formation and dispersion. In: Wingender J, Neu TR, Flemming H-C (eds) Microbial extrapolymeric substances, characterization, structure and function. Springer, Berlin, pp 93–112Google Scholar
  10. 10.
    Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191(5):1393–1403.  https://doi.org/10.1128/jb.01214-08 CrossRefPubMedGoogle Scholar
  11. 11.
    Basu Roy A, Sauer K (2014) Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol Microbiol 94(4):771–793.  https://doi.org/10.1111/mmi.12802 CrossRefPubMedGoogle Scholar
  12. 12.
    Basu Roy A, Petrova OE, Sauer K (2012) The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 194:2904–2915.  https://doi.org/10.1128/jb.05346-11 CrossRefGoogle Scholar
  13. 13.
    Morgan R, Kohn S, Hwang S-H, Hassett DJ, Sauer K (2006) BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188(21):7335–7343CrossRefGoogle Scholar
  14. 14.
    Petrova OE, Sauer K (2012) Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proc Natl Acad Sci U S A 109(41):16690–16695CrossRefGoogle Scholar
  15. 15.
    Petrova OE, Cherny KE, Sauer K (2015) The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA. J Bacteriol 197(1):174–187.  https://doi.org/10.1128/jb.02244-14 CrossRefPubMedGoogle Scholar
  16. 16.
    Sauer K, Cullen MC, Rickard AH, Zeef LAH, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186(21):7312–7326.  https://doi.org/10.1128/jb.186.21.7312-7326.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA, Kjelleberg S (2009) Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2(3):370–378CrossRefGoogle Scholar
  18. 18.
    Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191(23):7333–7342.  https://doi.org/10.1128/jb.00975-09 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O’Toole GA (2007) BifA, a c-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:8165–8178.  https://doi.org/10.1128/jb.00586-07 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Merritt JH, Brothers KM, Kuchma SL, O’Toole GA (2007) SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189(22):8154–8164.  https://doi.org/10.1128/jb.00585-07 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Römling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9(2):218–228.  https://doi.org/10.1016/j.mib.2006.02.010 CrossRefPubMedGoogle Scholar
  22. 22.
    Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134.  https://doi.org/10.1111/j.1365-2958.2004.04206.x CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188(7):2681–2691.  https://doi.org/10.1128/jb.188.7.2681-2691.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57(3):629–639.  https://doi.org/10.1111/j.1365-2958.2005.04697.x CrossRefGoogle Scholar
  25. 25.
    Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD (2004) HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54(1):75–88.  https://doi.org/10.1111/j.1365-2958.2004.04253.x CrossRefPubMedGoogle Scholar
  26. 26.
    Poudyal B, Sauer K (2018) PA3177 encodes an active diguanylate cyclase that contributes to the biofilm antimicrobial tolerance but not biofilm formation by P. aeruginosa. Antimicrob Agents Chemother 62(10):e01049–e01018.  https://doi.org/10.1128/aac.01049-18
  27. 27.
    Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T (2010) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75(4):815–826.  https://doi.org/10.1111/j.1365-2958.2009.06793.x CrossRefPubMedGoogle Scholar
  28. 28.
    Chua SL, Hultqvist LD, Yuan M, Rybtke M, Nielsen TE, Givskov M, Tolker-Nielsen T, Yang L (2015) In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation. Nat Protoc 10(8):1165–1180.  https://doi.org/10.1038/nprot.2015.067 CrossRefPubMedGoogle Scholar
  29. 29.
    An S, Wu J, Zhang L-H (2010) Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl Environ Microbiol 76(24):8160–8173.  https://doi.org/10.1128/aem.01233-10 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Thormann KM, Saville RM, Shukla S, Spormann AM (2005) Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187(3):1014–1021.  https://doi.org/10.1128/jb.187.3.1014-1021.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stacy A, Everett J, Jorth P, Trivedi U, Rumbaugh KP, Whiteley M (2014) Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc Natl Acad Sci U S A 111(21):7819–7824CrossRefGoogle Scholar
  32. 32.
    Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T (2005) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7(6):894–904.  https://doi.org/10.1111/j.1462-2920.2005.00775.x CrossRefPubMedGoogle Scholar
  33. 33.
    Delaquis PJ, Caldwell DE, Lawrence JR, McCurdy AR (1989) Detachment of Pseudomonas fluorescens from biofilms on glass surfaces in response to nutrient stress. Microb Ecol 18(3):199–210CrossRefGoogle Scholar
  34. 34.
    Delille A, Quiles F, Humbert F (2007) In situ monitoring of the nascent Pseudomonas fluorescens biofilm response to variations in the dissolved organic carbon level in low-nutrient water by attenuated total reflectance-Fourier transform infrared spectroscopy. Appl Environ Microbiol 73(18):5782–5788CrossRefGoogle Scholar
  35. 35.
    Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, Kjelleberg S (2009) Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 4(5):e5513CrossRefGoogle Scholar
  36. 36.
    Huynh TT, McDougald D, Klebensberger J, Al Qarni B, Barraud N, Rice SA, Kjelleberg S, Schleheck D (2012) Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent. PLoS One 7(8):e42874.  https://doi.org/10.1371/journal.pone.0042874 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Petrova OE, Sauer K (2012) PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms. J Bacteriol 194(21):5817–5828CrossRefGoogle Scholar
  38. 38.
    Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N (2013) NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by a MHYT-domain coupled phosphodiesterase. J Bacteriol 195(16):3531–3542.  https://doi.org/10.1128/jb.01156-12 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li Y, Petrova OE, Su S, Lau GW, Panmanee W, Na R, Hassett DJ, Davies DG, Sauer K (2014) BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa. PLoS Pathog 10(6):e1004168.  https://doi.org/10.1371/journal.ppat.1004168 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    James GA, Korber DR, Caldwell DE, Costerton JW (1995) Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J Bacteriol 177(4):907–915CrossRefGoogle Scholar
  41. 41.
    Marks LR, Davidson BA, Knight PR, Hakansson AP (2013) Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio 4(4):e00438–e00413CrossRefGoogle Scholar
  42. 42.
    Dimpy Kaliaa GM, Nakayamaa S, Zhenga Y, Zhoua J, Luoa Y, Guoa M, Roembkea BT, Sintim HO (2013) Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 42:305–341CrossRefGoogle Scholar
  43. 43.
    Carlson HK, Vance RE, Marletta MA (2010) H-NOX regulation of c-di-GMP metabolism and biofilm formation in Legionella pneumophila. Mol Microbiol 77(4):930–942.  https://doi.org/10.1111/j.1365-2958.2010.07259.x CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu N, Xu Y, Hossain S, Huang N, Coursolle D, Gralnick JA, Boon EM (2012) Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. Biochemistry 51(10):2087–2099.  https://doi.org/10.1021/bi201753f CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Schmidt I, Steenbakkers PJ, op den Camp HJ, Schmidt K, Jetten MS (2004) Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J Bacteriol 186(9):2781–2788CrossRefGoogle Scholar
  46. 46.
    Dow JM, Crossman L, Findlay K, He Y-Q, Feng J-X, Tang J-L (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100(19):10995–11000.  https://doi.org/10.1073/pnas.1833360100 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dean SN, Chung M-C, van Hoek ML (2015) Burkholderia diffusible signal factor signals to Francisella novicida to disperse biofilm and increase siderophore production. Appl Environ Microbiol 81(20):7057–7066CrossRefGoogle Scholar
  48. 48.
    Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12(7):789–796CrossRefGoogle Scholar
  49. 49.
    Lanter BB, Sauer K, Davies DG (2014) Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. mBio 5(3):01206–01214.  https://doi.org/10.1128/mBio.01206-14 CrossRefGoogle Scholar
  50. 50.
    Hay AJ, Zhu J (2015) Host intestinal signal-promoted biofilm dispersal induces Vibrio cholerae colonization. Infect Immun 83(1):317–323CrossRefGoogle Scholar
  51. 51.
    Amari DT, Marques CNH, Davies DG (2013) The putative enoyl-coenzyme a hydratase DspI is required for production of the Pseudomonas aeruginosa biofilm dispersion autoinducer cis-2-decenoic acid. J Bacteriol 195(20):4600–4610.  https://doi.org/10.1128/jb.00707-13 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rahmani-Badi A, Sepehr S, Fallahi H, Heidari-Keshel S (2015) Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique. Front Microbiol 6:383.  https://doi.org/10.3389/fmicb.2015.00383 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He Y-W, Zhang L-H, Heeb S, Camara M, Williams P, Dow JM (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103(17):6712–6717.  https://doi.org/10.1073/pnas.0600345103 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP, Dow JM (2010) Cell–cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci U S A 107(13):5989–5994.  https://doi.org/10.1073/pnas.0912839107 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chin K-H, Lee Y-C, Tu Z-L, Chen C-H, Tseng Y-H, Yang J-M, Ryan RP, McCarthy Y, Dow JM, Wang AHJ, Chou S-H (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell–cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396(3):646–662.  https://doi.org/10.1016/j.jmb.2009.11.076 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185(15):4585–4592.  https://doi.org/10.1128/jb.185.15.4585-4592.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Barraud N, Hassett DJ, Hwang S-H, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188(21):7344–7353.  https://doi.org/10.1128/jb.00779-06 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Cutruzzolà F, Frankenberg-Dinkel N (2016) Origin and impact of nitric oxide in Pseudomonas aeruginosa biofilms. J Bacteriol 198(1):55–65.  https://doi.org/10.1128/jb.00371-15 CrossRefPubMedGoogle Scholar
  59. 59.
    Galperin MY, Gaidenko TA, Mulkidjanian AY, Nakano M, Price CW (2001) MHYT, a new integral membrane sensor domain. FEMS Microbiol Lett 205(1):17–23CrossRefGoogle Scholar
  60. 60.
    Chambers JR, Cherny KE, Sauer K (2017) Susceptibility of Pseudomonas aeruginosa dispersed cells to antimicrobial agents is dependent on the dispersion cue and class of the antimicrobial agent used. Antimicrob Agents Chemother 61(12):e00846–e00817.  https://doi.org/10.1128/aac.00846-17 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, Kjelleberg S, Tolker-Nielsen T, Givskov M, Yang L (2014) Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyle. Nat Commun 5:4462.  https://doi.org/10.1038/ncomms5462 CrossRefPubMedGoogle Scholar
  62. 62.
    Chua SL, Tan SY-Y, Rybtke MT, Chen Y, Rice SA, Kjelleberg S, Tolker-Nielsen T, Yang L, Givskov M (2013) Bis-(3′-5′)-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 57(5):2066–2075CrossRefGoogle Scholar
  63. 63.
    Fleming D, Rumbaugh K (2018) The consequences of biofilm dispersal on the host. Sci Rep 8(1):10738.  https://doi.org/10.1038/s41598-018-29121-2 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Flemming H-C (2016) EPS—then and now. Microorganisms 4(4):41CrossRefGoogle Scholar
  65. 65.
    Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49(4):905–918.  https://doi.org/10.1046/j.1365-2958.2003.03615.x CrossRefPubMedGoogle Scholar
  66. 66.
    Monds RD, Newell PD, Gross RH, O’Toole GA (2007) Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol Microbiol 63(3):656–679.  https://doi.org/10.1111/j.1365-2958.2006.05539.x CrossRefPubMedGoogle Scholar
  67. 67.
    Rybtke M, Berthelsen J, Yang L, Høiby N, Givskov M, Tolker-Nielsen T (2015) The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface. Microbiology 4(6):917–930Google Scholar
  68. 68.
    Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75(4):827–842.  https://doi.org/10.1111/j.1365-2958.2009.06991.x CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89(3):205–218.  https://doi.org/10.1177/0022034509359403 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kaplan JB, Ragunath C, Ramasubbu N, Fine DH (2003) Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. J Bacteriol 185(16):4693–4698CrossRefGoogle Scholar
  71. 71.
    Yu S, Su T, Wu H, Liu S, Wang D, Zhao T, Jin Z, Du W, Zhu M-J, Chua SL, Yang L, Zhu D, Gu L, Ma LZ (2015) PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res 25(12):1352–1367.  https://doi.org/10.1038/cr.2015.129 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Fleming D, Rumbaugh K (2017) Approaches to dispersing medical biofilms. Microorganisms 5(2):15CrossRefGoogle Scholar
  73. 73.
    Gupta K, Liao J, Petrova OE, Cherny KE, Sauer K (2014) Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol Microbiol 92(3):488–506.  https://doi.org/10.1111/mmi.12587 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Petrova OE, Gupta K, Liao J, Goodwine JS, Sauer K (2017) Divide and conquer: the Pseudomonas aeruginosa two-component hybrid SagS enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits. Environ Microbiol 19(5):2005–2024.  https://doi.org/10.1111/1462-2920.13719 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chambers JR, Liao J, Schurr MJ, Sauer K (2014) BrlR from Pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor. Mol Microbiol 92(3):471–487.  https://doi.org/10.1111/mmi.12562 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Liao J, Schurr MJ, Sauer K (2013) The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug-efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195:3352–3363CrossRefGoogle Scholar
  77. 77.
    Liao J, Sauer K (2012) The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J Bacteriol 194(18):4823–4836.  https://doi.org/10.1128/jb.00765-12 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Poudyal B, Sauer K (2018) The ABC of biofilm drug tolerance: the MerR-like regulator BrlR is an activator of ABC transport systems, with PA1874-77 contributing to the tolerance of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob Agents Chemother 62(2):e01981–e01917.  https://doi.org/10.1128/aac.01981-17 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271.  https://doi.org/10.1038/nrmicro.2016.190 CrossRefGoogle Scholar
  80. 80.
    Jones CJ, Newsom D, Kelly B, Irie Y, Jennings LK, Xu B, Limoli DH, Harrison JJ, Parsek MR, White P, Wozniak DJ (2014) ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa. PLoS Pathog 10(3):e1003984.  https://doi.org/10.1371/journal.ppat.1003984 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69(2):376–389.  https://doi.org/10.1111/j.1365-2958.2008.06281.x CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Baraquet C, Murakami K, Parsek MR, Harwood CS (2012) The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res 40(15):7207–7218.  https://doi.org/10.1093/nar/gks384 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Baraquet C, Harwood CS (2013) Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker a motif of the enhancer-binding protein FleQ. Proc Natl Acad Sci U S A 110(46):18478–18483.  https://doi.org/10.1073/pnas.1318972110 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biological Sciences, Binghamton Biofilm Research CenterBinghamton UniversityBinghamtonUSA

Personalised recommendations