Cyclic di-GMP in Burkholderia spp.

  • Grace I. Borlee
  • Mihnea R. Mangalea
  • Bradley R. BorleeEmail author


Burkholderia spp. survive in diverse ecological niches in association with soil, plants, and animals. In these environments, some members of the Burkholderia spp. participate in beneficial interactions that promote plant growth, nutrient cycling, and bioremediation; however, some Burkholderia spp. are also pathogens of plants, fungi, amoebae, insects, animals, and humans. In order to transition between niches and compete with other microbes, Burkholderia spp. have evolved sophisticated sensory systems to detect and respond to a variety of cues and signals from external stimuli that allow rapid response to changing environmental conditions. Cyclic di-GMP is a nearly universal bacterial second messenger and a key signaling molecule in Burkholderia spp. that regulates a variety of bacterial behaviors including virulence, motility, and biofilm formation. This chapter will review the progress toward understanding the sensory components and associated regulatory components that respond to environmental cues and correspondingly alter the intracellular levels of cyclic di-GMP. Recent reports indicate that various members of the Burkholderia spp. respond to alterations in temperature, nutrient availability, and population density (via Burkholderia diffusible signal factor) to control bacterial behaviors associated with pathogenesis, dissemination, and survival in the niches that Burkholderia spp. inhabit.


Burkholderia Cyclic di-GMP Biofilm Motility BDSF Virulence 


  1. 1.
    Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275PubMedCrossRefGoogle Scholar
  2. 2.
    Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol 39:897–904PubMedCrossRefGoogle Scholar
  3. 3.
    Parte AC (2018) LPSN – list of prokaryotic names with standing in nomenclature (, 20 years on. Int J Syst Evol Microbiol 68:1825–1829PubMedCrossRefGoogle Scholar
  4. 4.
    Estrada-de los Santos P, Uriel Rojas-Rojas F, Yanet Tapia-Garcia E, Soledad Vasquez-Murrieta M, Hirsch A (2016) To split or not to split: an opinion on dividing the genus Burkholderia. Ann Microbiol 66:1303–1314CrossRefGoogle Scholar
  5. 5.
    Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729CrossRefGoogle Scholar
  6. 6.
    Shinjo R, Uesaka K, Ihara K, Sakazaki S, Yano K, Kondo M, Tanaka A (2018) Draft genome sequence of Burkholderia vietnamiensis strain RS1, a nitrogen-fixing endophyte isolated from sweet potato. Microbiol Resour Announc 7(3):e00820–e00818PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Elliott GN, Chen WM, Chou JH, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, de Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180PubMedCrossRefGoogle Scholar
  8. 8.
    Reis VM, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VL, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162PubMedCrossRefGoogle Scholar
  9. 9.
    Drigo B, Kowalchuk GA, Knapp BA, Pijl AS, Boschker HT, van Veen JA (2013) Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob Chang Biol 19:621–636PubMedCrossRefGoogle Scholar
  10. 10.
    Draghi WO, Degrossi J, Bialer M, Brelles-Marino G, Abdian P, Soler-Bistue A, Wall L, Zorreguieta A (2018) Biodiversity of cultivable Burkholderia species in Argentinean soils under no-till agricultural practices. PLoS One 13:e0200651PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000Res 5:F1000PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Singh RK, Malik N, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb Ecol 66:375–384PubMedCrossRefGoogle Scholar
  13. 13.
    Castanheira N, Dourado AC, Kruz S, Alves PI, Delgado-Rodriguez AI, Pais I, Semedo J, Scotti-Campos P, Sanchez C, Borges N, Carvalho G, Barreto Crespo MT, Fareleira P (2016) Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils. J Appl Microbiol 120:724–739PubMedCrossRefGoogle Scholar
  14. 14.
    Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164PubMedCrossRefGoogle Scholar
  16. 16.
    Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sheibani-Tezerji R, Rattei T, Sessitsch A, Trognitz F, Mitter B (2015) Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress. MBio 6:e00621–e00615PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Clement C, Barka EA, Dhondt-Cordelier S, Vaillant-Gaveau N (2015) Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci 6:810PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kim M, Kim WS, Tripathi BM, Adams J (2014) Distinct bacterial communities dominate tropical and temperate zone leaf litter. Microb Ecol 67:837–848PubMedCrossRefGoogle Scholar
  20. 20.
    Vu HP, Mu A, Moreau JW (2013) Biodegradation of thiocyanate by a novel strain of Burkholderia phytofirmans from soil contaminated by gold mine tailings. Lett Appl Microbiol 57:368–372PubMedGoogle Scholar
  21. 21.
    Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L, Reyes VL, Hauser L, Cordova M, Gomez L, Gonzalez M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A 103:15280–15287PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Denet E, Coupat-Goutaland B, Nazaret S, Pelandakis M, Favre-Bonte S (2017) Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol Res 116:3151–3162PubMedCrossRefGoogle Scholar
  23. 23.
    Noinarin P, Chareonsudjai P, Wangsomnuk P, Wongratanacheewin S, Chareonsudjai S (2016) Environmental free-living amoebae isolated from soil in Khon Kaen, Thailand, antagonize Burkholderia pseudomallei. PLoS One 11:e0167355PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20–28PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    De Smet B, Mayo M, Peeters C, Zlosnik JE, Spilker T, Hird TJ, LiPuma JJ, Kidd TJ, Kaestli M, Ginther JL, Wagner DM, Keim P, Bell SC, Jacobs JA, Currie BJ, Vandamme P (2015) Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. Int J Syst Evol Microbiol 65:2265–2271CrossRefGoogle Scholar
  26. 26.
    Sfeir MM (2018) Burkholderia cepacia complex infections: more complex than the bacterium name suggest. J Infect 77:166–170PubMedCrossRefGoogle Scholar
  27. 27.
    Kenna DTD, Lilley D, Coward A, Martin K, Perry C, Pike R, Hill R, Turton JF (2017) Prevalence of Burkholderia species, including members of Burkholderia cepacia complex, among UK cystic and non-cystic fibrosis patients. J Med Microbiol 66:490–501PubMedCrossRefGoogle Scholar
  28. 28.
    Medina-Pascual MJ, Valdezate S, Villalon P, Garrido N, Rubio V, Saez-Nieto JA (2012) Identification, molecular characterisation and antimicrobial susceptibility of genomovars of the Burkholderia cepacia complex in Spain. Eur J Clin Microbiol Infect Dis 31:3385–3396PubMedCrossRefGoogle Scholar
  29. 29.
    Zlosnik JE, Zhou G, Brant R, Henry DA, Hird TJ, Mahenthiralingam E, Chilvers MA, Wilcox P, Speert DP (2015) Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years’ experience. Ann Am Thorac Soc 12:70–78PubMedCrossRefGoogle Scholar
  30. 30.
    Abdelfattah R, Al-Jumaah S, Al-Qahtani A, Al-Thawadi S, Barron I, Al-Mofada S (2018) Outbreak of Burkholderia cepacia bacteraemia in a tertiary care centre due to contaminated ultrasound probe gel. J Hosp Infect 98:289–294PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ahn Y, Kim JM, Lee YJ, LiPuma J, Hussong D, Marasa B, Cerniglia C (2017) Effects of extended storage of chlorhexidine gluconate and benzalkonium chloride solutions on the viability of Burkholderia cenocepacia. J Microbiol Biotechnol 27:2211–2220PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Becker SL, Berger FK, Feldner SK, Karliova I, Haber M, Mellmann A, Schafers HJ, Gartner B (2018) Outbreak of Burkholderia cepacia complex infections associated with contaminated octenidine mouthwash solution, Germany, August to September 2018. Euro Surveill 23:1800540PubMedCentralCrossRefGoogle Scholar
  33. 33.
    Glowicz J, Crist M, Gould C, Moulton-Meissner H, Noble-Wang J, de Man TJB, Perry KA, Miller Z, Yang WC, Langille S, Ross J, Garcia B, Kim J, Epson E, Black S, Pacilli M, LiPuma JJ, Fagan R, Workgroup BcI (2018) A multistate investigation of health care-associated Burkholderia cepacia complex infections related to liquid docusate sodium contamination, January-October 2016. Am J Infect Control 46:649–655PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Song JE, Kwak YG, Um TH, Cho CR, Kim S, Park IS, Hwang JH, Kim N, Oh GB (2018) Outbreak of Burkholderia cepacia pseudobacteraemia caused by intrinsically contaminated commercial 0.5% chlorhexidine solution in neonatal intensive care units. J Hosp Infect 98:295–299PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Brooks RB, Mitchell PK, Miller JR, Vasquez AM, Havlicek J, Lee H, Quinn M, Adams E, Baker D, Greeley R, Ross K, Daskalaki I, Walrath J, Moulton-Meissner H, Crist MB, Burkholderia cepacia Workgroup (2018) Multistate outbreak of Burkholderia cepacia complex bloodstream infections after exposure to contaminated saline flush syringes – United States, 2016–2017. Clin Infect Dis 69(3):445–449. CrossRefGoogle Scholar
  36. 36.
    Torbeck L, Raccasi D, Guilfoyle DE, Friedman RL, Hussong D (2011) Burkholderia cepacia: this decision is overdue. PDA J Pharm Sci Technol 65:535–543PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Elshafie HS, Camele I, Racioppi R, Scrano L, Iacobellis NS, Bufo SA (2012) In vitro antifungal activity of Burkholderia gladioli pv. agaricicola against some phytopathogenic fungi. Int J Mol Sci 13:16291–16302PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Simonetti E, Roberts IN, Montecchia MS, Gutierrez-Boem FH, Gomez FM, Ruiz JA (2018) A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Microbiol Res 206:50–59PubMedCrossRefGoogle Scholar
  39. 39.
    Swain DM, Yadav SK, Tyagi I, Kumar R, Kumar R, Ghosh S, Das J, Jha G (2017) A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi. Nat Commun 8:404PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zilinskas RA (2017) A brief history of biological weapons programmes and the use of animal pathogens as biological warfare agents. Rev Sci Tech 36:415–422PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Program FSA (2017) 2017 Annual report of the Federal Select Agent Program.
  42. 42.
    Chou SH, Galperin MY (2016) Diversity of cyclic Di-GMP-binding proteins and mechanisms. J Bacteriol 198:32–46CrossRefGoogle Scholar
  43. 43.
    Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW, Goodson JR, Galperin MY, Yildiz FH, Lee VT (2015) Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems. PLoS Pathog 11:e1005232PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wang YC, Chin KH, Tu ZL, He J, Jones CJ, Sanchez DZ, Yildiz FH, Galperin MY, Chou SH (2016) Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat Commun 7:12481PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, Mayer R, Ross P, Amikam D, Weinhouse H, Cohen A, Sapir S, Ohana P, Benziman M (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180:4416–4425PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Johnson SL, Bishop-Lilly KA, Ladner JT, Daligault HE, Davenport KW, Jaissle J, Frey KG, Koroleva GI, Bruce DC, Coyne SR, Broomall SM, Li PE, Teshima H, Gibbons HS, Palacios GF, Rosenzweig CN, Redden CL, Xu Y, Minogue TD, Chain PS (2015) Complete genome sequences for 59 Burkholderia isolates, both pathogenic and near neighbor. Genome Announc 3:e00159-15PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    NCBI. Burkholderia cenocepacia AU 1054 genome sequence. Last accessed 20 Feb 2019
  51. 51.
    Seo YS, Lim J, Choi BS, Kim H, Goo E, Lee B, Lim JS, Choi IY, Moon JS, Kim J, Hwang I (2011) Complete genome sequence of Burkholderia gladioli BSR3. J Bacteriol 193:3149PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lim J, Lee TH, Nahm BH, Choi YD, Kim M, Hwang I (2009) Complete genome sequence of Burkholderia glumae BGR1. J Bacteriol 191:3758–3759PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nierman WC, DeShazer D, Kim HS, Tettelin H, Nelson KE, Feldblyum T, Ulrich RL, Ronning CM, Brinkac LM, Daugherty SC, Davidsen TD, Deboy RT, Dimitrov G, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Khouri H, Kolonay JF, Madupu R, Mohammoud Y, Nelson WC, Radune D, Romero CM, Sarria S, Selengut J, Shamblin C, Sullivan SA, White O, Yu Y, Zafar N, Zhou L, Fraser CM (2004) Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101:14246–14251PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    NCBI. Burkholderia multivorans ATCC 17616 genome sequence. Last accessed 20 Feb 2019
  55. 55.
    Moulin L, Klonowska A, Caroline B, Booth K, Vriezen JA, Melkonian R, James EK, Young JP, Bena G, Hauser L, Land M, Kyrpides N, Bruce D, Chain P, Copeland A, Pitluck S, Woyke T, Lizotte-Waniewski M, Bristow J, Riley M (2014) Complete genome sequence of Burkholderia phymatum STM815(T), a broad host range and efficient nitrogen-fixing symbiont of Mimosa species. Stand Genomic Sci 9:763–774PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Weilharter A, Mitter B, Shin MV, Chain PS, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Sebaihia M, Thomson NR, Bason N, Beacham IR, Brooks K, Brown KA, Brown NF, Challis GL, Cherevach I, Chillingworth T, Cronin A, Crossett B, Davis P, DeShazer D, Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, Jagels K, Keith KE, Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, Vesaratchavest M, Whitehead S, Yeats C, Barrell BG, Oyston PC, Parkhill J (2004) Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101:14240–14245PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hayden HS, Lim R, Brittnacher MJ, Sims EH, Ramage ER, Fong C, Wu Z, Crist E, Chang J, Zhou Y, Radey M, Rohmer L, Haugen E, Gillett W, Wuthiekanun V, Peacock SJ, Kaul R, Miller SI, Manoil C, Jacobs MA (2012) Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS One 7:e36507PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    NCBI. Burkholderia rhizoxinica HKI 454 genome sequence. Last accessed 20 Feb 2019
  60. 60.
    NCBI. Burkholderia sp. 383 genome sequence. Last accessed 20 Feb 2019
  61. 61.
    NCBI. Burkholderia sp. CCGE1001 genome sequence. Last accessed 20 Feb 2019
  62. 62.
    Ormeno-Orrillo E, Rogel MA, Chueire LM, Tiedje JM, Martinez-Romero E, Hungria M (2012) Genome sequences of Burkholderia sp. strains CCGE1002 and H160, isolated from legume nodules in Mexico and Brazil. J Bacteriol 194:6927PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    NCBI. Burkholderia sp. CCGE1003 genome sequence. Last accessed 20 Feb 2019
  64. 64.
    Kim HS, Schell MA, Yu Y, Ulrich RL, Sarria SH, Nierman WC, DeShazer D (2005) Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 6:174PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    NCBI. Burkholderia vietnamiensis G4 genome sequence. Last accessed 20 Feb 2019
  66. 66.
    Plumley BA, Martin KH, Borlee GI, Marlenee NL, Burtnick MN, Brett PJ, AuCoin DP, Bowen RA, Schweizer HP, Borlee BR (2017) Thermoregulation of biofilm formation in Burkholderia pseudomallei is disrupted by mutation of a putative diguanylate cyclase. J Bacteriol 199:5CrossRefGoogle Scholar
  67. 67.
    Lardi M, Aguilar C, Pedrioli A, Omasits U, Suppiger A, Carcamo-Oyarce G, Schmid N, Ahrens CH, Eberl L, Pessi G (2015) sigma54-dependent response to nitrogen limitation and virulence in Burkholderia cenocepacia strain H111. Appl Environ Microbiol 81:4077–4089PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tuanyok A, Mayo M, Scholz H, Hall CM, Allender CJ, Kaestli M, Ginther J, Spring-Pearson S, Bollig MC, Stone JK, Settles EW, Busch JD, Sidak-Loftis L, Sahl JW, Thomas A, Kreutzer L, Georgi E, Gee JE, Bowen RA, Ladner JT, Lovett S, Koroleva G, Palacios G, Wagner DM, Currie BJ, Keim P (2017) Burkholderia humptydooensis sp. nov., a new species related to Burkholderia thailandensis and the fifth member of the Burkholderia pseudomallei complex. Appl Environ Microbiol 83:e02802–e02816PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Dance DA (1991) Melioidosis: the tip of the iceberg? Clin Microbiol Rev 4:52–60PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chirakul S, Norris MH, Pagdepanichkit S, Somprasong N, Randall LB, Shirley JF, Borlee BR, Lomovskaya O, Tuanyok A, Schweizer HP (2018) Transcriptional and post-transcriptional regulation of PenA beta-lactamase in acquired Burkholderia pseudomallei beta-lactam resistance. Sci Rep 8:10652PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Limmathurotsakul D, Golding N, Dance DA, Messina JP, Pigott DM, Moyes CL, Rolim DB, Bertherat E, Day NP, Peacock SJ, Hay SI (2016) Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 1:15008PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cheng AC, Currie BJ (2005) Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18:383–416PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kaestli M, Harrington G, Mayo M, Chatfield MD, Harrington I, Hill A, Munksgaard N, Gibb K, Currie BJ (2015) What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens? PLoS Negl Trop Dis 9:e0003635PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Limmathurotsakul D, Kanoksil M, Wuthiekanun V, Kitphati R, deStavola B, Day NP, Peacock SJ (2013) Activities of daily living associated with acquisition of melioidosis in Northeast Thailand: a matched case-control study. PLoS Negl Trop Dis 7:e2072PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hemarajata P, Baghdadi JD, Hoffman R, Humphries RM (2016) Burkholderia pseudomallei: challenges for the clinical microbiology laboratory. J Clin Microbiol 54:2866–2873PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lee HS, Gu F, Ching SM, Lam Y, Chua KL (2010) CdpA is a Burkholderia pseudomallei cyclic di-GMP phosphodiesterase involved in autoaggregation, flagellum synthesis, motility, biofilm formation, cell invasion, and cytotoxicity. Infect Immun 78:1832–1840PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6CrossRefGoogle Scholar
  78. 78.
    Mangalea MR, Plumley BA, Borlee BR (2017) Nitrate sensing and metabolism inhibit biofilm formation in the opportunistic pathogen Burkholderia pseudomallei by reducing the intracellular concentration of c-di-GMP. Front Microbiol 8:1353PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Majerczyk CD, Brittnacher MJ, Jacobs MA, Armour CD, Radey MC, Bunt R, Hayden HS, Bydalek R, Greenberg EP (2014) Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons. J Bacteriol 196:3862–3871PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Price EP, Viberg LT, Kidd TJ, Bell SC, Currie BJ, Sarovich DS (2018) Transcriptomic analysis of longitudinal Burkholderia pseudomallei infecting the cystic fibrosis lung. Microb Genom 4:e000194PubMedCentralPubMedGoogle Scholar
  81. 81.
    Traverse CC, Mayo-Smith LM, Poltak SR, Cooper VS (2013) Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections. Proc Natl Acad Sci U S A 110:E250–E259PubMedCrossRefGoogle Scholar
  82. 82.
    Lazar Adler NR, Allwood EM, Deveson Lucas D, Harrison P, Watts S, Dimitropoulos A, Treerat P, Alwis P, Devenish RJ, Prescott M, Govan B, Adler B, Harper M, Boyce JD (2016) Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei. BMC Genomics 17:331PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Saikh KU, Mott TM (2017) Innate immune response to Burkholderia mallei. Curr Opin Infect Dis 30:297–302PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Memisevic V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Townsend K, Yu C, Yu X, DeShazer D, Reifman J, Wallqvist A (2013) Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol Cell Proteomics 12:3036–3051PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bochkareva OO, Moroz EV, Davydov II, Gelfand MS (2018) Genome rearrangements and selection in multi-chromosome bacteria Burkholderia spp. BMC Genomics 19:965PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Galyov EE, Brett PJ, DeShazer D (2010) Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu Rev Microbiol 64:495–517PubMedCrossRefGoogle Scholar
  87. 87.
    Cloutier M, Muru K, Ravicoularamin G, Gauthier C (2018) Polysaccharides from Burkholderia species as targets for vaccine development, immunomodulation and chemical synthesis. Nat Prod Rep 35(12):1251–1293. CrossRefPubMedGoogle Scholar
  88. 88.
    Borlee GI, Plumley BA, Martin KH, Somprasong N, Mangalea MR, Islam MN, Burtnick MN, Brett PJ, Steinmetz I, AuCoin DP, Belisle JT, Crick DC, Schweizer HP, Borlee BR (2017) Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster. PLoS Negl Trop Dis 11:e0005689PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Rosenstein BJ, Hall DE (1980) Pneumonia and septicemia due to Pseudomonas cepacia in a patient with cystic fibrosis. Johns Hopkins Med J 147:188–189PubMedGoogle Scholar
  90. 90.
    Hauser AR, Jain M, Bar-Meir M, McColley SA (2011) Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 24:29–70PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ferreira AS, Leitao JH, Sousa SA, Cosme AM, Sa-Correia I, Moreira LM (2007) Functional analysis of Burkholderia cepacia genes bceD and bceF, encoding a phosphotyrosine phosphatase and a tyrosine autokinase, respectively: role in exopolysaccharide biosynthesis and biofilm formation. Appl Environ Microbiol 73:524–534PubMedCrossRefGoogle Scholar
  92. 92.
    Ferreira AS, Silva IN, Oliveira VH, Cunha R, Moreira LM (2011) Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments. Front Cell Infect Microbiol 1:16PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Romling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Moreira LM, Videira PA, Sousa SA, Leitao JH, Cunha MV, Sa-Correia I (2003) Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun 312:323–333PubMedCrossRefGoogle Scholar
  95. 95.
    Fazli M, McCarthy Y, Givskov M, Ryan RP, Tolker-Nielsen T (2013) The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349. Microbiology 2:105–122Google Scholar
  96. 96.
    Kumar B, Sorensen JL, Cardona ST (2018) A c-di-GMP-modulating protein regulates swimming motility of Burkholderia cenocepacia in response to arginine and glutamate. Front Cell Infect Microbiol 8:56PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Richter AM, Fazli M, Schmid N, Shilling R, Suppiger A, Givskov M, Eberl L, Tolker-Nielsen T (2018) Key players and individualists of cyclic-di-GMP Signaling in Burkholderia cenocepacia. Front Microbiol 9:3286PubMedCrossRefGoogle Scholar
  98. 98.
    Boon C, Deng Y, Wang LH, He Y, Xu JL, Fan Y, Pan SQ, Zhang LH (2008) A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36PubMedCrossRefGoogle Scholar
  99. 99.
    Subramoni S, Sokol PA (2012) Quorum sensing systems influence Burkholderia cenocepacia virulence. Future Microbiol 7:1373–1387PubMedCrossRefGoogle Scholar
  100. 100.
    McCarthy Y, Yang L, Twomey KB, Sass A, Tolker-Nielsen T, Mahenthiralingam E, Dow JM, Ryan RP (2010) A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia. Mol Microbiol 77:1220–1236PubMedCrossRefGoogle Scholar
  101. 101.
    Deng Y, Schmid N, Wang C, Wang J, Pessi G, Wu D, Lee J, Aguilar C, Ahrens CH, Chang C, Song H, Eberl L, Zhang LH (2012) Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. Proc Natl Acad Sci U S A 109:15479–15484PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Silva IN, Santos PM, Santos MR, Zlosnik JE, Speert DP, Buskirk SW, Bruger EL, Waters CM, Cooper VS, Moreira LM (2016) Long-term evolution of Burkholderia multivorans during a chronic cystic fibrosis infection reveals shifting forces of selection. mSystems 1:e00029–e00016PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Schmid N, Suppiger A, Steiner E, Pessi G, Kaever V, Fazli M, Tolker-Nielsen T, Jenal U, Eberl L (2017) High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111. Microbiology 163:754–764PubMedCrossRefGoogle Scholar
  104. 104.
    Yang C, Cui C, Ye Q, Kan J, Fu S, Song S, Huang Y, He F, Zhang LH, Jia Y, Gao YG, Harwood CS, Deng Y (2017) Burkholderia cenocepacia integrates cis-2-dodecenoic acid and cyclic dimeric guanosine monophosphate signals to control virulence. Proc Natl Acad Sci U S A 114:13006–13011PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Mangalea MR, Borlee GI, Borlee BR (2017) The current status of extracellular polymeric substances produced by Burkholderia pseudomallei. Curr Trop Med Rep 4:117–126CrossRefGoogle Scholar
  106. 106.
    Ferreira AS, Silva IN, Oliveira VH, Becker JD, Givskov M, Ryan RP, Fernandes F, Moreira LM (2013) Comparative transcriptomic analysis of the Burkholderia cepacia tyrosine kinase bceF mutant reveals a role in tolerance to stress, biofilm formation, and virulence. Appl Environ Microbiol 79:3009–3020PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Fazli M, O’Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M, Ryan RP, Tolker-Nielsen T (2011) The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol 82:327–341CrossRefGoogle Scholar
  108. 108.
    Fazli M, Rybtke M, Steiner E, Weidel E, Berthelsen J, Groizeleau J, Bin W, Zhi BZ, Yaming Z, Kaever V, Givskov M, Hartmann RW, Eberl L, Tolker-Nielsen T (2017) Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB. Microbiology 6:e00480CrossRefGoogle Scholar
  109. 109.
    Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271PubMedCrossRefGoogle Scholar
  110. 110.
    Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Jung HI, Kim YJ, Lee YJ, Lee HS, Lee JK, Kim SK (2017) Mutation of the cyclic di-GMP phosphodiesterase gene in Burkholderia lata SK875 attenuates virulence and enhances biofilm formation. J Microbiol 55:800–808PubMedCrossRefGoogle Scholar
  112. 112.
    Kikuchi Y, Yumoto I (2013) Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia symbiont. Appl Environ Microbiol 79:2088–2091PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kim JK, Kwon JY, Kim SK, Han SH, Won YJ, Lee JH, Kim CH, Fukatsu T, Lee BL (2014) Purine biosynthesis, biofilm formation, and persistence of an insect-microbe gut symbiosis. Appl Environ Microbiol 80:4374–4382PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ham JH, Melanson RA, Rush MC (2011) Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol 12:329–339PubMedCrossRefGoogle Scholar
  115. 115.
    Chen R, Barphagha IK, Ham JH (2015) Identification of potential genetic components involved in the deviant quorum-sensing signaling pathways of Burkholderia glumae through a functional genomics approach. Front Cell Infect Microbiol 5:22PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Melanson RA, Barphagha I, Osti S, Lelis TP, Karki HS, Chen R, Shrestha BK, Ham JH (2017) Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae. Microbiology 163:266–279PubMedCrossRefGoogle Scholar
  117. 117.
    Kumar R, Kumar Yadav S, Swain DM, Jha G (2017) Burkholderia gladioli strain NGJ1 deploys a prophage tail-like protein for mycophagy. Microb Cell 5:116–118PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Nandakumar R, Shahjahan AKM, Yuan XL, Dickstein ER, Groth DE, Clark CA, Cartwright RD, Rush MC (2009) Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the Southern United States. Plant Dis 93:896–905PubMedCrossRefGoogle Scholar
  119. 119.
    Vigliani MB, Cunha CB (2018) Multiple recurrent abscesses in a patient with undiagnosed IL-12 deficiency and infection by Burkholderia gladioli. IDCases 12:80–83PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zanotti C, Munari S, Brescia G, Barion U (2018) Burkholderia gladioli sinonasal infection. Eur Ann Otorhinolaryngol Head Neck Dis 136(1):55–56. CrossRefPubMedGoogle Scholar
  121. 121.
    Shehata HR, Lyons EM, Jordan KS, Raizada MN (2016) Bacterial endophytes from wild and ancient maize are able to suppress the fungal pathogen Sclerotinia homoeocarpa. J Appl Microbiol 120:756–769PubMedCrossRefGoogle Scholar
  122. 122.
    Shehata HR, Ettinger CL, Eisen JA, Raizada MN (2016) Genes required for the anti-fungal activity of a bacterial endophyte isolated from a corn landrace grown continuously by subsistence farmers since 1000 BC. Front Microbiol 7:1548PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Grace I. Borlee
    • 1
  • Mihnea R. Mangalea
    • 1
  • Bradley R. Borlee
    • 1
    Email author
  1. 1.Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsUSA

Personalised recommendations