Advertisement

Regulation by Cyclic di-GMP in Myxococcus xanthus

  • María Pérez-Burgos
  • Lotte Søgaard-AndersenEmail author
Chapter
  • 131 Downloads

Abstract

Myxococcus xanthus has a complex lifecycle that is regulated by nutrient availability. In the presence of nutrients, M. xanthus cells grow, divide, and move to assemble into colonies that feed cooperatively either saprophytically or on prey. In response to starvation, a developmental program is initiated that culminates in formation of multicellular spore-filled fruiting bodies. The nucleotide-based second messenger cyclic di-GMP accumulates in M. xanthus and has critical functions in both stages of the lifecycle. Here, we describe the roles of cyclic di-GMP, its metabolizing proteins, and receptor proteins. During growth, the correct level of cyclic di-GMP is important for type IV pili-dependent motility. During development, the cyclic di-GMP level increases and a threshold concentration of cyclic di-GMP is essential for completion of the developmental program. By individually inactivating the genes involved in cyclic di-GMP synthesis or degradation, two diguanylate cyclases, DmxA and DmxB, were identified to function at specific stages of the lifecycle with DmxA involved in type IV pili-dependent motility and DmxB in development. Similarly, the phosphodiesterase PmxA is specifically important for development but functions independently of DmxB. Bioinformatics analyses suggest the existence of various cyclic di-GMP receptor proteins, a few of which have been confirmed experimentally while the remainder are still uncharacterized. We are only just beginning to understand regulation by cyclic di-GMP in M. xanthus and it will be exciting to identify all the processes regulated by cyclic di-GMP and the underlying mechanisms.

Keywords

Cyclic di-GMP Myxobacteria Myxococcus xanthus Type IV pili Motility Development Exopolysaccharide Sporulation 

Notes

Acknowledgments

We thank Dorota Skotnicka for many helpful discussions. Work on cyclic di-GMP signaling in the authors’ laboratory is supported by Deutsche Forschungsgemeinschaft (DFG, German Research Council) within the framework of the SFB987 Microbial Diversity in Environmental Signal Response and the Priority Programme SPP 1879 Nucleotide Second Messenger Signaling in Bacteria as well as by the Max Planck Society.

References

  1. 1.
    Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52.  https://doi.org/10.1128/MMBR.00043-12 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273.  https://doi.org/10.1038/nrmicro2109 CrossRefGoogle Scholar
  3. 3.
    Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271–284.  https://doi.org/10.1038/nrmicro.2016.190 CrossRefGoogle Scholar
  4. 4.
    Tschowri N, Schumacher MA, Schlimpert S, Chinnam NB, Findlay KC, Brennan RG, Buttner MJ (2014) Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 158:1136–1147.  https://doi.org/10.1016/j.cell.2014.07.022 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tschowri N (2016) Cyclic dinucleotide-controlled regulatory pathways in Streptomyces species. J Bacteriol 198:47–54.  https://doi.org/10.1128/JB.00423-15 CrossRefGoogle Scholar
  6. 6.
    Skotnicka D, Smaldone GT, Petters T, Trampari E, Liang J, Kaever V, Malone JG, Singer M, Søgaard-Andersen L (2016) A minimal threshold of c-di-GMP is essential for fruiting body formation and sporulation in Myxococcus xanthus. PLoS Genet 12:e1006080.  https://doi.org/10.1371/journal.pgen.1006080 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hobley L, Fung RK, Lambert C, Harris MA, Dabhi JM, King SS, Basford SM, Uchida K, Till R, Ahmad R, Aizawa S, Gomelsky M, Sockett RE (2012) Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog 8:e1002493.  https://doi.org/10.1371/journal.ppat.1002493 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schäper S, Yau HCL, Krol E, Skotnicka D, Heimerl T, Gray J, Kaever V, Søgaard-Andersen L, Vollmer W, Becker A (2018) Seven-transmembrane receptor protein RgsP and cell wall-binding protein RgsM promote unipolar growth in Rhizobiales. PLoS Genet 14:e1007594.  https://doi.org/10.1371/journal.pgen.1007594 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cohen D, Mechold U, Nevenzal H, Yarmiyhu Y, Randall TE, Bay DC, Rich JD, Parsek MR, Kaever V, Harrison JJ, Banin E (2015) Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 112:11359–11364.  https://doi.org/10.1073/pnas.1421450112 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Orr MW, Donaldson GP, Severin GB, Wang J, Sintim HO, Waters CM, Lee VT (2015) Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 112(36):E5048–E5057.  https://doi.org/10.1073/pnas.1507245112 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33:942–957.  https://doi.org/10.1111/j.1574-6976.2009.00185.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Konovalova A, Petters T, Søgaard-Andersen L (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 34:89–106.  https://doi.org/10.1111/j.1574-6976.2009.00194.x CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Y, Ducret A, Shaevitz J, Mignot T (2012) From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus. FEMS Microbiol Rev 36:149–164.  https://doi.org/10.1111/j.1574-6976.2011.00307.x CrossRefPubMedGoogle Scholar
  14. 14.
    Kroos L (2017) Highly signal-responsive gene regulatory network governing Myxococcus development. Trends Genet 33:3–15.  https://doi.org/10.1016/j.tig.2016.10.006 CrossRefPubMedGoogle Scholar
  15. 15.
    Harris BZ, Kaiser D, Singer M (1998) The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes Dev 12:1022–1035.  https://doi.org/10.1101/gad.12.7.1022 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Singer M, Kaiser D (1995) Ectopic production of guanosine penta- and teraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9:1633–1644.  https://doi.org/10.1101/gad.9.13.1633 CrossRefPubMedGoogle Scholar
  17. 17.
    Schumacher D, Søgaard-Andersen L (2017) Regulation of cell polarity in motility and cell division in Myxococcus xanthus. Annu Rev Microbiol 71:61–78.  https://doi.org/10.1146/annurev-micro-102215-095415 CrossRefPubMedGoogle Scholar
  18. 18.
    Shi W, Zusman DR (1993) The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A 90:3378–3382.  https://doi.org/10.1073/pnas.90.8.3378 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li Y, Sun H, Ma X, Lu A, Lux R, Zusman D, Shi W (2003) Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100:5443–5448.  https://doi.org/10.1073/pnas.0836639100 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Faure LM, Fiche J-B, Espinosa L, Ducret A, Anantharaman V, Luciano J, Lhospice S, Islam ST, Tréguier J, Sotes M, Kuru E, Van Nieuwenhze MS, Brun YV, Théodoly O, Aravind L, Nollmann M, Mignot T (2016) The mechanism of force transmission at bacterial focal adhesion complexes. Nature 539:530–535.  https://doi.org/10.1038/nature20121 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Petters T, Zhang X, Nesper J, Treuner-Lange A, Gomez-Santos N, Hoppert M, Jenal U, Søgaard-Andersen L (2012) The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus. Mol Microbiol 84:147–165.  https://doi.org/10.1111/j.1365-2958.2012.08015.x CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Overgaard M, Wegener-Feldbrügge S, Søgaard-Andersen L (2006) The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in Myxococcus xanthus. J Bacteriol 188:4384–4394.  https://doi.org/10.1128/JB.00189-06 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Skotnicka D, Petters T, Heering J, Hoppert M, Kaever V, Søgaard-Andersen L (2015) c-di-GMP regulates type IV pili-dependent-motility in Myxococcus xanthus. J Bacteriol 198:77–90.  https://doi.org/10.1128/JB.00281-15 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43(Database issue):D257–D260.  https://doi.org/10.1093/nar/gku949 CrossRefPubMedGoogle Scholar
  25. 25.
    Roelofs KG, Wang JX, Sintim HO, Lee VT (2011) Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc Natl Acad Sci U S A 108:15528–15533.  https://doi.org/10.1073/pnas.1018949108 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nesper J, Reinders A, Glatter T, Schmidt A, Jenal U (2012) A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J Proteome 75:4874–4878.  https://doi.org/10.1016/j.jprot.2012.05.033 CrossRefGoogle Scholar
  27. 27.
    Seshasayee AS, Fraser GM, Luscombe NM (2010) Comparative genomics of cyclic-di-GMP signalling in bacteria: post-translational regulation and catalytic activity. Nucl Acids Res 38:5970–5981.  https://doi.org/10.1093/nar/gkq382 CrossRefPubMedGoogle Scholar
  28. 28.
    Wang YC, Chin KH, Tu ZL, He J, Jones CJ, Sanchez DZ, Yildiz FH, Galperin MY, Chou SH (2016) Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat Com 7:12481.  https://doi.org/10.1038/ncomms12481 CrossRefGoogle Scholar
  29. 29.
    Chou S-H, Galperin MY (2016) Diversity of cyclic di-GMP-binding proteins and mechanisms. J Bacteriol 198:32–46.  https://doi.org/10.1128/jb.00333-15 CrossRefGoogle Scholar
  30. 30.
    Jakovljevic V, Leonardy S, Hoppert M, Søgaard-Andersen L (2008) PilB and PilT are ATPases acting antagonistically in type IV pili function in Myxococcus xanthus. J Bacteriol 190:2411–2421.  https://doi.org/10.1128/JB.01793-07 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Christen B, Christen M, Paul R, Schmid F, Folcher M, Jenoe P, Meuwly M, Jenal U (2006) Allosteric control of cyclic di-GMP signaling. J Biol Chem 281:32015–32024.  https://doi.org/10.1074/jbc.M603589200 CrossRefGoogle Scholar
  32. 32.
    Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103:2839–2844.  https://doi.org/10.1073/pnas.0511090103 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wu SS, Kaiser D (1997) Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 179:7748–7758.  https://doi.org/10.1128/jb.179.24.7748-7758.1997 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bretl DJ, Muller S, Ladd KM, Atkinson SN, Kirby JR (2016) Type IV-pili dependent motility is co-regulated by PilSR and PilS2R2 two-component systems via distinct pathways in Myxococcus xanthus. Mol Microbiol 102:37–53.  https://doi.org/10.1111/mmi.13445 CrossRefPubMedGoogle Scholar
  35. 35.
    Youderian P, Hartzell PL (2006) Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus. Genetics 172:1397–1410.  https://doi.org/10.1534/genetics.105.050542 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215.  https://doi.org/10.1146/annurev.biochem.69.1.183 CrossRefPubMedGoogle Scholar
  37. 37.
    Behmlander RM, Dworkin M (1994) Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol 176:6295–6303.  https://doi.org/10.1128/jb.176.20.6295-6303.1994 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kearns DB, Bonner PJ, Smith DR, Shimkets LJ (2002) An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J Bacteriol 184:1678–1684.  https://doi.org/10.1128/JB.184.6.1678-1684.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gronewold TM, Kaiser D (2001) The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol 40:744–756.  https://doi.org/10.1046/j.1365-2958.2001.02428.x CrossRefGoogle Scholar
  40. 40.
    Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:376–389.  https://doi.org/10.1111/j.1365-2958.2008.06281.x CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H, Navarro MV (2016) Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 113:E209–E218.  https://doi.org/10.1073/pnas.1523148113 CrossRefPubMedGoogle Scholar
  42. 42.
    Srivastava D, Harris RC, Waters CM (2011) Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J Bacteriol 193:6331–6341.  https://doi.org/10.1128/JB.05167-11 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lancero H, Caberoy NB, Castaneda S, Li YN, Lu A, Dutton D, Duan XY, Kaplan HB, Shi WY, Garza AG (2004) Characterization of a Myxococcus xanthus mutant that is defective for adventurous motility and social motility. Microbiol-Sgm 150:4085–4093.  https://doi.org/10.1099/mic.0.27381-0 CrossRefGoogle Scholar
  44. 44.
    Caberoy NB, Welch RD, Jakobsen JS, Slater SC, Garza AG (2003) Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J Bacteriol 185:6083–6094.  https://doi.org/10.1128/JB.185.20.6083-6094.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lu A, Cho K, Black WP, Duan XY, Lux R, Yang Z, Kaplan HB, Zusman DR, Shi W (2005) Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol 55:206–220.  https://doi.org/10.1111/j.1365-2958.2004.04369.x CrossRefPubMedGoogle Scholar
  46. 46.
    Hodgkin J, Kaiser D (1979) Genetics of gliding motility in Myxococcus xanthus (Myxobacterales) - 2 gene systems control movement. Mol Gen Genet 171:177–191.  https://doi.org/10.1007/Bf00270004 CrossRefGoogle Scholar
  47. 47.
    Shimkets LJ (1986) Role of cell cohesion in Myxococcus xanthus fruiting body formation. J Bacteriol 166:842–848.  https://doi.org/10.1128/jb.166.3.842-848.1986 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Anantharaman V, Aravind L (2000) Cache – a signaling domain common to animal Ca2+−channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci 25:535–537.  https://doi.org/10.1016/S0968-0004(00)01672-8 CrossRefGoogle Scholar
  49. 49.
    Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176:111–116.  https://doi.org/10.1111/j.1574-6968.1999.tb13650.x CrossRefPubMedGoogle Scholar
  50. 50.
    Pogue CB, Zhou T, Nan B (2018) PlpA, a PilZ-like protein, regulates directed motility of the bacterium Myxococcus xanthus. Mol Microbiol 107:214–228.  https://doi.org/10.1111/mmi.13878 CrossRefPubMedGoogle Scholar
  51. 51.
    Milner DS, Till R, Cadby I, Lovering AL, Basford SM, Saxon EB, Liddell S, Williams LE, Sockett RE (2014) Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio. PLoS Genet 10:e1004253.  https://doi.org/10.1371/journal.pgen.1004253 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Munoz-Dorado J, Inouye S, Inouye M (1991) A gene encoding a protein Serine Threonine kinase is required for normal development of M. xanthus, a Gram-negative bacterium. Cell 67:995–1006.  https://doi.org/10.1016/0092-8674(91)90372-6 CrossRefPubMedGoogle Scholar
  53. 53.
    Escalante AE, Inouye S, Travisano M (2012) A spectrum of pleiotropic consequences in development due to changes in a regulatory pathway. PLoS One 7:e43413.  https://doi.org/10.1371/journal.pone.0043413 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jakobsen JS, Jelsbak L, Jelsbak L, Welch RD, Cummings C, Goldman B, Stark E, Slater S, Kaiser D (2004) Sigma54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J Bacteriol 186:4361–4368.  https://doi.org/10.1128/JB.186.13.4361-4368.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW, Goodson JR, Galperin MY, Yildiz FH, Lee VT (2015) Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems. PLoS Pathog 11:e1005232.  https://doi.org/10.1371/journal.ppat.1005232 CrossRefGoogle Scholar
  56. 56.
    Hallberg ZF, Wang XC, Wright TA, Nan B, Ad O, Yeo J, Hammond MC (2016) Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3′, 3′-cGAMP). Proc Natl Acad Sci U S A 113:1790–1795.  https://doi.org/10.1073/pnas.1515287113 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of EcophysiologyMax Planck Institute for Terrestrial MicrobiologyMarburgGermany

Personalised recommendations