Advertisement

The Regulation of Alginate Biosynthesis via Cyclic di-GMP Signaling

  • M. Fata Moradali
  • Bernd H. A. RehmEmail author
Chapter
  • 120 Downloads

Abstract

Bacterial alginates are anionic exopolysaccharides, which are produced by Pseudomonas and Azotobacter species. Bacterial cells embedded in extracellular polymeric substances such as alginates have a survival advantage as they are protected against various physical and chemical stresses as well as the immune system. In the model organism P. aeruginosa, alginate is polymerized and secreted by a multiprotein complex spanning the entire bacterial envelope. The ubiquitous second messenger cyclic di-GMP is required for activation of alginate production. In this chapter, after a brief overview on alginates, their general properties, biological functions and applications, we will discuss the importance of alginate production and its regulation via cyclic di-GMP signaling during bacterial pathogenesis, which implies biofilm formation coinciding with chronic infection. We will review the current understanding of the molecular pathways controlling the cyclic di-GMP-dependent regulation of alginate production including (1) diguanylate cyclases and phosphodiesterases, which control cellular levels of cyclic di-GMP, (2) the cyclic di-GMP receptor/effector protein Alg44 that senses cyclic di-GMP, while it interacts with other protein subunits to constitute the alginate biosynthesis/modification/secretion multiprotein complex at the bacterial envelope, (3) insights into structural elucidation of PilZ domain-containing Alg44 including mechanistic insights into cyclic di-GMP binding and activation of alginate polymerization, and (4) other regulator proteins whose functions are controlled by cyclic di-GMP levels and impact on alginate production.

Keywords

Alginates Cyclic di-GMP Pseudomonas Diguanylate cyclases Phosphodiesterases PilZ domain Polymerization 

Notes

Acknowledgment

This research was supported in part by the Deutsche Forschungsgemeinschaft (Germany) and Massey University (New Zealand). The authors are grateful to the current and former members of the Rehm research group for their invaluable contributions providing insight into alginate biosynthesis by bacteria.

References

  1. 1.
    Stanford E (1883) On Align: a new substance obtained from some of the commoner species of marine algae. Chem News 47:254–257Google Scholar
  2. 2.
    Linker A, Jones RS (1964) A polysaccharide resembling alginic acid from a Pseudomonas microorganism. Nature 204:187–188CrossRefGoogle Scholar
  3. 3.
    Linker A, Jones RS (1966) A new polysaccharide resembling alginic acid isolated from Pseudomonads. J Biol Chem 241(16):3845–3851PubMedGoogle Scholar
  4. 4.
    Darzins A, Chakrabarty AM (1984) Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol 159(1):9–18CrossRefGoogle Scholar
  5. 5.
    Merighi M, T Lee V, Hyodo M, Hayakawa Y, Lory S (2007) The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65:876–895.  https://doi.org/10.1111/j.1365-2958.2007.05817.x CrossRefGoogle Scholar
  6. 6.
    Mørch ÝA, Donati I, Strand BL (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7(5):1471–1480.  https://doi.org/10.1021/bm060010d CrossRefPubMedGoogle Scholar
  7. 7.
    Helgerud T, Gåserød O, Fjæreide T, Andersen PO, Larsen CK (2009) Alginates. Food stabilisers, thickeners and gelling agents.  https://doi.org/10.1002/9781444314724.ch4
  8. 8.
    Moradali MF, Ghods S, Rehm BHA (2018) Alginate biosynthesis and biotechnological production. In: BHA R, Moradali MF (eds) Alginates and their biomedical applications. Springer series in biomaterials science and engineering, vol 11. Springer, SingaporeGoogle Scholar
  9. 9.
    Rehm B, Moradali MF (2018) Alginates and their biomedical applications. Springer series in biomaterials science and engineering, vol 11. Springer, SingaporeCrossRefGoogle Scholar
  10. 10.
    Rehm BH, Valla S (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48(3):281–288CrossRefGoogle Scholar
  11. 11.
    Skaugrud O, Hagen A, Borgersen B, Dornish M (1999) Biomedical and pharmaceutical applications of alginate and chitosan. Biotechnol Genet Eng Rev 16:23–40CrossRefGoogle Scholar
  12. 12.
    Clementi F (1997) Alginate production by Azotobacter Vinelandii. Crit Rev Biotechnol 17(4):327–361.  https://doi.org/10.3109/07388559709146618 CrossRefPubMedGoogle Scholar
  13. 13.
    Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464.  https://doi.org/10.1146/annurev.mi.41.100187.002251 CrossRefPubMedGoogle Scholar
  14. 14.
    Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11(3):217–221.  https://doi.org/10.1016/S0924-8579(99)00018-7 CrossRefPubMedGoogle Scholar
  15. 15.
    Hay ID, Gatland K, Campisano A, Jordens JZ, Rehm BHA (2009a) Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain. Appl Environ Microbiol 75(18):6022–6025.  https://doi.org/10.1128/AEM.01078-09 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    McDaniel CT, Panmanee W, Hassett DJ (2015) An overview of infections in cystic fibrosis airways and the role of environmental conditions on Pseudomonas aeruginosa biofilm formation and viability. In: Cystic fibrosis in the light of new research. doi: https://doi.org/10.5772/60897 Google Scholar
  17. 17.
    Strempel N, Neidig A, Nusser M, Geffers R, Vieillard J, Lesouhaitier O, Brenner-Weiss G, Overhage J (2013) Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One 8(12):e82240.  https://doi.org/10.1371/journal.pone.0082240 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BH (2014) Genetics and regulation of bacterial alginate production. Environ Microbiol 16(10):2997–3011.  https://doi.org/10.1111/1462-2920.12389 CrossRefPubMedGoogle Scholar
  19. 19.
    Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578–592.  https://doi.org/10.1038/nrmicro2354 CrossRefPubMedGoogle Scholar
  20. 20.
    Remminghorst U, Rehm BH (2006b) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28(21):1701–1712.  https://doi.org/10.1007/s10529-006-9156-x CrossRefPubMedGoogle Scholar
  21. 21.
    Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BH (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6(6):637–650.  https://doi.org/10.1111/1751-7915.12076 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mathee K, McPherson CJ, Ohman DE (1997) Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 179(11):3711–3720CrossRefGoogle Scholar
  23. 23.
    Schurr MJ, Martin DW, Mudd MH, Hibler NS, Boucher JC, Deretic V (1993) The algD promoter: regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis. Cell Mol Biol Res 39(4):371–376PubMedGoogle Scholar
  24. 24.
    Okkotsu Y, Little AS, Schurr MJ (2014) The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 4:82.  https://doi.org/10.3389/fcimb.2014.00082 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hay ID, Schmidt O, Filitcheva J, Rehm BH (2012) Identification of a periplasmic AlgK-AlgX-MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate. Appl Microbiol Biotechnol 93(1):215–227.  https://doi.org/10.1007/s00253-011-3430-0 CrossRefPubMedGoogle Scholar
  26. 26.
    Moradali MF, Donati I, Sims IM, Ghods S, Rehm BH (2015) Alginate polymerization and modification are linked in Pseudomonas aeruginosa. mBio 6(3):e00453–e00415.  https://doi.org/10.1128/mBio.00453-15 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rehman ZU, Wang Y, Moradali MF, Hay ID, Rehm BH (2013) Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol 79(10):3264–3272.  https://doi.org/10.1128/AEM.00460-13 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Baker P, Ricer T, Moynihan PJ, Kitova EN, Walvoort MT, Little DJ, Whitney JC, Dawson K, Weadge JT, Robinson H, Ohman DE, Codée JD, Klassen JS, Clarke AJ, Howell PL (2014) P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. PLoS Pathog 10(8):e1004334.  https://doi.org/10.1371/journal.ppat.1004334 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Franklin MJ, Ohman DE (2002) Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol 184(11):3000–3007CrossRefGoogle Scholar
  30. 30.
    Gimmestad M, Sletta H, Ertesvåg H, Bakkevig K, Jain S, S-j S, Skjåk-Bræk G, Ellingsen TE, Ohman DE, Valla S (2003) The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol 185(12):3515–3523.  https://doi.org/10.1128/JB.185.12.3515-3523.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jain S, Franklin MJ, Ertesvåg H, Valla S, Ohman DE (2003) The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol Microbiol 47(4):1123–1133CrossRefGoogle Scholar
  32. 32.
    Hay ID, Rehman ZU, Rehm BH (2010) Membrane topology of outer membrane protein AlgE, which is required for alginate production in Pseudomonas aeruginosa. Appl Environ Microbiol 76(6):1806–1812.  https://doi.org/10.1128/AEM.02945-09 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Keiski CL, Harwich M, Jain S, Neculai AM, Yip P, Robinson H, Whitney JC, Riley L, Burrows LL, Ohman DE, Howell PL (2010) AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18(2):265–273.  https://doi.org/10.1016/j.str.2009.11.015 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Whitney JC, Hay ID, Li C, Eckford PD, Robinson H, Amaya MF, Wood LF, Ohman DE, Bear CE, Rehm BH, Howell PL (2011) Structural basis for alginate secretion across the bacterial outer membrane. Proc Natl Acad Sci U S A 108(32):13083–13088.  https://doi.org/10.1073/pnas.1104984108 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jain S, Ohman DE (1998) Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J Bacteriol 180(3):634–641CrossRefGoogle Scholar
  36. 36.
    Tan J, Rouse SL, Li D, Pye VE, Vogeley L, Brinth AR, El Arnaout T, Whitney JC, Howell PL, Sansom MS, Caffrey M (2014) A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa. Acta Crystallogr D Biol Crystallogr 70(Pt 8):2054–2068.  https://doi.org/10.1107/S1399004714001850 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rehm BH (1996) The Azotobacter vinelandii gene algJ encodes an outer-membrane protein presumably involved in export of alginate. Microbiology 142(Pt 4):873–880.  https://doi.org/10.1099/00221287-142-4-873 CrossRefPubMedGoogle Scholar
  38. 38.
    Rehm BH, Boheim G, Tommassen J, Winkler UK (1994a) Overexpression of algE in Escherichia coli: subcellular localization, purification, and ion channel properties. J Bacteriol 176(18):5639–5647CrossRefGoogle Scholar
  39. 39.
    Rehm BH, Grabert E, Hein J, Winkler UK (1994b) Antibody response of rabbits and cystic fibrosis patients to an alginate-specific outer membrane protein of a mucoid strain of Pseudomonas aeruginosa. Microb Pathog 16(1):43–51.  https://doi.org/10.1006/mpat.1994.1004 CrossRefPubMedGoogle Scholar
  40. 40.
    Rehman ZU, Rehm BH (2013) Dual roles of Pseudomonas aeruginosa AlgE in secretion of the virulence factor alginate and formation of the secretion complex. Appl Environ Microbiol 79(6):2002–2011.  https://doi.org/10.1128/AEM.03960-12 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jain S, Ohman DE (2005) Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun 73(10):6429–6436.  https://doi.org/10.1128/IAI.73.10.6429-6436.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang Y, Moradali MF, Goudarztalejerdi A, Sims IM, Rehm BH (2016) Biological function of a polysaccharide degrading enzyme in the periplasm. Sci Rep 6:31249.  https://doi.org/10.1038/srep31249 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52.  https://doi.org/10.1128/MMBR.00043-12 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134.  https://doi.org/10.1111/j.1365-2958.2004.04206.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Moradali MF, Ghods S, Rehm BH (2017a) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39.  https://doi.org/10.3389/fcimb.2017.00039 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279.  https://doi.org/10.1038/325279a0 CrossRefGoogle Scholar
  47. 47.
    Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP, Dow JM (2010) Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci U S A 107(13):5989–5994.  https://doi.org/10.1073/pnas.0912839107 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, Mayer R, Ross P, Amikam D, Weinhouse H, Cohen A, Sapir S, Ohana P, Benziman M (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180(17):4416CrossRefGoogle Scholar
  49. 49.
    Ryan RP, Fouhy Y, Lucey JF, Dow JM (2006) Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 188(24):8327–8334.  https://doi.org/10.1128/JB.01079-06 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103(8):2839–2844.  https://doi.org/10.1073/pnas.0511090103 CrossRefPubMedGoogle Scholar
  51. 51.
    Pultz IS, Christen M, Kulasekara HD, Kennard A, Kulasekara B, Miller SI (2012) The response threshold of Salmonella PilZ domain proteins is determined by their binding affinities for c-di-GMP. Mol Microbiol 86(6):1424–1440.  https://doi.org/10.1111/mmi.12066 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI (2010) Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328(5983):1295–1297.  https://doi.org/10.1126/science.1188658 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kulasekara BR, Kamischke C, Kulasekara HD, Christen M, Wiggins PA, Miller SI (2013) c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. Elife 2:e01402.  https://doi.org/10.7554/eLife.01402 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Moradali MF, Ghods S, Rehm BHA (2017b) Activation mechanism and cellular localization of membrane-anchored alginate polymerase in Pseudomonas aeruginosa. Appl Environ Microbiol 83(9):e03499–e03416.  https://doi.org/10.1128/AEM.03499-16 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102(40):14422–14427.  https://doi.org/10.1073/pnas.0507170102 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Porter SL, Wadhams GH, Armitage JP (2011) Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 9(3):153–165.  https://doi.org/10.1038/nrmicro2505 CrossRefPubMedGoogle Scholar
  57. 57.
    Kuchma SL, Connolly JP, O'Toole GA (2005) A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 187(4):1441–1454.  https://doi.org/10.1128/JB.187.4.1441-1454.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rao F, Yang Y, Qi Y, Liang Z-X (2008) Catalytic mechanism of cyclic di-GMP-specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa. J Bacteriol 190(10):3622CrossRefGoogle Scholar
  59. 59.
    Hay ID, Remminghorst U, Rehm BH (2009b) MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 75(4):1110–1120.  https://doi.org/10.1128/AEM.02416-08 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N (2013) NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J Bacteriol 195(16):3531CrossRefGoogle Scholar
  61. 61.
    Galperin MY, Gaidenko TA, Mulkidjanian AY, Nakano M, Price CW (2001) MHYT, a new integral membrane sensor domain. FEMS Microbiol Lett 205(1):17–23CrossRefGoogle Scholar
  62. 62.
    Wang Y, Hay ID, Rehman ZU, Rehm BH (2015) Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 99(17):7253–7265.  https://doi.org/10.1007/s00253-015-6591-4 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191(23):7333–7342.  https://doi.org/10.1128/JB.00975-09 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6.  https://doi.org/10.1093/bioinformatics/bti739 CrossRefGoogle Scholar
  65. 65.
    Remminghorst U, Rehm BH (2006a) Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett 580(16):3883–3888.  https://doi.org/10.1016/j.febslet.2006.05.077 CrossRefPubMedGoogle Scholar
  66. 66.
    Habazettl J, Allan MG, Jenal U, Grzesiek S (2011) Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout. J Biol Chem 286(16):14304–14314.  https://doi.org/10.1074/jbc.M110.209007 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ko J, Ryu KS, Kim H, Shin JS, Lee JO, Cheong C, Choi BS (2010) Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by Pilz domain proteins. J Mol Biol 398(1):97–110.  https://doi.org/10.1016/j.jmb.2010.03.007 CrossRefPubMedGoogle Scholar
  68. 68.
    Ramelot TA, Yee A, Cort JR, Semesi A, Arrowsmith CH, Kennedy MA (2007) NMR structure and binding studies confirm that PA4608 from Pseudomonas aeruginosa is a PilZ domain and a c-di-GMP binding protein. Proteins 66(2):266–271.  https://doi.org/10.1002/prot.21199 CrossRefGoogle Scholar
  69. 69.
    Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186.  https://doi.org/10.1038/nature11744 CrossRefGoogle Scholar
  70. 70.
    Shin JS, Ryu KS, Ko J, Lee A, Choi BS (2011) Structural characterization reveals that a PilZ domain protein undergoes substantial conformational change upon binding to cyclic dimeric guanosine monophosphate. Protein Sci 20(2):270–277.  https://doi.org/10.1002/pro.557 CrossRefPubMedGoogle Scholar
  71. 71.
    Steiner S, Lori C, Boehm A, Jenal U (2013) Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32(3):354–368.  https://doi.org/10.1038/emboj.2012.315 CrossRefGoogle Scholar
  72. 72.
    Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327(5967):866–868.  https://doi.org/10.1126/science.1181185 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Li W, Li M, Hu L, Zhu J, Xie Z, Chen J, He ZG (2018) HpoR, a novel c-di-GMP effective transcription factor, links the second messenger’s regulatory function to the mycobacterial antioxidant defense. Nucleic Acids Res 46(7):3595–3611.  https://doi.org/10.1093/nar/gky146 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321(5887):411–413.  https://doi.org/10.1126/science.1159519 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Morgan JL, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21(5):489–496.  https://doi.org/10.1038/nsmb.2803 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Saxena IM, Brown RM, Fevre M, Geremia RA, Henrissat B (1995) Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol 177(6):1419–1424CrossRefGoogle Scholar
  77. 77.
    Oglesby LL, Jain S, Ohman DE (2008) Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 154(Pt 6):1605–1615.  https://doi.org/10.1099/mic.0.2007/015305-0 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Whitney JC, Whitfield GB, Marmont LS, Yip P, Neculai AM, Lobsanov YD, Robinson H, Ohman DE, Howell PL (2015) Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa. J Biol Chem 290(20):12451–12462.  https://doi.org/10.1074/jbc.M115.645051 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858.  https://doi.org/10.1038/nprot.2015.053 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Chou SH, Galperin MY (2016) Diversity of cyclic di-GMP-binding proteins and mechanisms. J Bacteriol 198(1):32–46.  https://doi.org/10.1128/JB.00333-15 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Oral BiologyCollege of Dentistry, University of FloridaGainesvilleUSA
  2. 2.Centre for Cell Factories and BiopolymersGriffith Institute for Drug Discovery, Griffith UniversityBrisbaneAustralia

Personalised recommendations