Activation of Bacterial Cellulose Biosynthesis by Cyclic di-GMP

  • Jochen ZimmerEmail author


Microbes frequently decorate their surfaces with complex carbohydrates to form cell walls, mediate host interactions, or to reduce the efficacies of immune defenses. In a biofilm, bacteria are embedded in a three-dimensional polysaccharide-rich matrix whose formation is often controlled by cyclic di-GMP. In this chapter, I will summarize our current knowledge of the mechanism by which cyclic di-GMP activates bacterial cellulose synthase. Cellulose is a common biofilm component and its biosynthesis is allosterically regulated by cyclic di-GMP. As an exopolysaccharide, cellulose is synthesized and secreted by a membrane-embedded processive glycosyltransferase that contains a C-terminal cyclic di-GMP-binding PilZ domain. Many exopolysaccharide synthases are allosterically regulated by cyclic di-GMP, either by partnering with or being covalently linked to cyclic di-GMP-binding domains. The structural and functional characterizations of Rhodobacter sphaeroides cellulose synthase in resting and activated states provided unique insights into how cyclic di-GMP modulates enzymatic functions. This will be reviewed by discussing (1) biochemical analyses leading to cyclic di-GMP’s discovery and elucidation of its activation mechanism; (2) the structural basis for allosteric activation of cellulose biosynthesis; and (3) additional cyclic di-GMP-regulated control mechanisms of bacterial cellulose synthase complexes.


Allosteric activation Biofilm Cellulose synthase Exopolysaccharide 


  1. 1.
    Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78CrossRefGoogle Scholar
  2. 2.
    McNamara JT, Morgan JLW, Zimmer J (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem 84:17.11–17.27CrossRefGoogle Scholar
  3. 3.
    Dowd MK, French AD, Reilly PJ (1992) Conformational analysis of the anomeric forms of sophorose, laminarabiose, and cellobiose using MM3. Carbohydr Res 233:15–34CrossRefGoogle Scholar
  4. 4.
    Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306CrossRefGoogle Scholar
  5. 5.
    McCrate OA, Zhou X, Reichhardt C, Cegelski L (2013) Sum of the parts: composition and architecture of the bacterial extracellular matrix. J Mol Biol 425(22):4286–4294CrossRefGoogle Scholar
  6. 6.
    Wolfenden R, Lu X, Young G (1998) Spontaneous hydrolysis of glycosides. J Am Chem Soc 120:6814–6815CrossRefGoogle Scholar
  7. 7.
    Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci U S A 73(12):4565–4569CrossRefGoogle Scholar
  8. 8.
    Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325(6101):279–281CrossRefGoogle Scholar
  9. 9.
    Römling U, Galperin M, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Kim S, Gaffney BL, Jones RA (2006) Polymorphism of the signaling molecule c-di-GMP. J Am Chem Soc 128(21):7015–7024CrossRefGoogle Scholar
  11. 11.
    Ryjenkov DA, Simm R, Römling U, Gomelsky M (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281(41):30310–30314CrossRefGoogle Scholar
  12. 12.
    Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF (2007) The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26(24):5153–5166CrossRefGoogle Scholar
  13. 13.
    Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6CrossRefGoogle Scholar
  14. 14.
    Morgan J, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186CrossRefGoogle Scholar
  15. 15.
    Morgan JL, McNamara JT, Fischer M, Rich J, Chen HM, Withers SG, Zimmer J (2016) Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531(7594):329–334CrossRefGoogle Scholar
  16. 16.
    Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci U S A 110(44):17856–17861CrossRefGoogle Scholar
  17. 17.
    Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134CrossRefGoogle Scholar
  18. 18.
    Morgan JLW, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21(5):489–496CrossRefGoogle Scholar
  19. 19.
    Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF (2007) The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26(24):5153–5166CrossRefGoogle Scholar
  20. 20.
    Brown C, Leijon F, Bulone V (2012) Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis. Nat Protoc 7(9):1634–1650CrossRefGoogle Scholar
  21. 21.
    Matthysse AG, Thomas DL, White AR (1995) Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177(4):1076–1081CrossRefGoogle Scholar
  22. 22.
    Matthysse AG, White S, Lightfoot R (1995) Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177(4):1069–1075CrossRefGoogle Scholar
  23. 23.
    Romling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153(4):205–212CrossRefGoogle Scholar
  24. 24.
    Krasteva PV, Bernal-Bayard J, Travier L, Martin FA, Kaminski PA, Karimova G, Fronzes R, Ghigo JM (2017) Insights into the structure and assembly of a bacterial cellulose secretion system. Nat Commun 8(1):2065CrossRefGoogle Scholar
  25. 25.
    Thongsomboon W, Serra DO, Possling A, Hadjineophytou C, Hengge R, Cegelski L (2018) Phosphoethanolamine cellulose: a naturally produced chemically modified cellulose. Science 359(6373):334–338CrossRefGoogle Scholar
  26. 26.
    Le Quéré B, Ghigo J-M (2009) BcsQ is an essential component of the Escherichia coli cellulose biosynthesis apparatus that localizes at the bacterial cell pole. Mol Microbiol 72(3):724–740CrossRefGoogle Scholar
  27. 27.
    Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A, Galperin MY, Romling U, Gomelsky M (2014) GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol Microbiol 93(3):439–452CrossRefGoogle Scholar
  28. 28.
    Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463CrossRefGoogle Scholar
  29. 29.
    Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R (2006) Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62(4):1014–1034CrossRefGoogle Scholar
  30. 30.
    Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598CrossRefGoogle Scholar
  31. 31.
    Roh SH, Stam NJ, Hryc CF, Couoh-Cardel S, Pintilie G, Chiu W, Wilkens S (2018) The 3.5-A CryoEM structure of nanodisc-reconstituted yeast vacuolar ATPase Vo Proton Channel. Mol Cell 69(6):993–1004. e1003CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations