Advertisement

Measuring Individual Cell Cyclic di-GMP: Identifying Population Diversity and Cyclic di-GMP Heterogeneity

  • Samuel I. MillerEmail author
  • Erik Petersen
Chapter
  • 95 Downloads

Abstract

Cyclic di-GMP is a second messenger used by bacteria to regulate motility, extracellular polysaccharide production, and the cell cycle. Recent advances in the measurement of real time cyclic di-GMP levels in single cells have uncovered significant dynamic heterogeneity of second messenger concentrations within bacterial populations. This heterogeneity results in a wide range of phenotypic outcomes within a single population, providing the potential for population survival and adaptability in response to rapidly changing environments. In this chapter, we discuss some of the measurement technologies available for single-cell measurement of cyclic di-GMP concentrations, the resulting discovery of heterogeneous cyclic di-GMP populations, the mechanisms bacteria use to generate this heterogeneity, and the biochemical and functional consequences of heterogeneity on cyclic di-GMP effector binding and the bacterial population.

Keywords

Cyclic di-GMP Heterogeneity Single cell Microscopy Biosensor Effector 

References

  1. 1.
    Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52.  https://doi.org/10.1128/MMBR.00043-12 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ausmees N, Mayer R, Weinhouse H, Volman G, Amikam D, Benziman M, Lindberg M (2001) Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol Lett 204(1):163–167CrossRefGoogle Scholar
  3. 3.
    Schmidt AJ, Ryjenkov DA, Gomelsky M (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187(14):4774–4781.  https://doi.org/10.1128/JB.187.14.4774-4781.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Romling U, Simm R (2009) Prevailing concepts of c-di-GMP signaling. Contrib Microbiol 16:161–181.  https://doi.org/10.1159/000219379 CrossRefPubMedGoogle Scholar
  5. 5.
    Galperin MY (2010) Diversity of structure and function of response regulator output domains. Curr Opin Microbiol 13(2):150–159.  https://doi.org/10.1016/j.mib.2010.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chou SH, Galperin MY (2016) Diversity of cyclic Di-GMP-binding proteins and mechanisms. J Bacteriol 198(1):32–46.  https://doi.org/10.1128/JB.00333-15 CrossRefGoogle Scholar
  7. 7.
    Pultz IS, Christen M, Kulasekara HD, Kennard A, Kulasekara B, Miller SI (2012) The response threshold of Salmonella PilZ domain proteins is determined by their binding affinities for c-di-GMP. Mol Microbiol 86(6):1424–1440.  https://doi.org/10.1111/mmi.12066 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Spangler C, Bohm A, Jenal U, Seifert R, Kaever V (2010) A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods 81(3):226–231.  https://doi.org/10.1016/j.mimet.2010.03.020 CrossRefPubMedGoogle Scholar
  9. 9.
    Tischler AD, Camilli A (2005) Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73(9):5873–5882.  https://doi.org/10.1128/IAI.73.9.5873-5882.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rybtke MT, Borlee BR, Murakami K, Irie Y, Hentzer M, Nielsen TE, Givskov M, Parsek MR, Tolker-Nielsen T (2012) Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl Environ Microbiol 78(15):5060–5069.  https://doi.org/10.1128/AEM.00414-12 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ferreira RB, Antunes LC, Greenberg EP, McCarter LL (2008) Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol 190(3):851–860.  https://doi.org/10.1128/JB.01462-07 CrossRefPubMedGoogle Scholar
  12. 12.
    Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321(5887):411–413.  https://doi.org/10.1126/science.1159519 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schaper S, Steinchen W, Krol E, Altegoer F, Skotnicka D, Sogaard-Andersen L, Bange G, Becker A (2017) AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production. Proc Natl Acad Sci U S A 114(24):E4822–E4831.  https://doi.org/10.1073/pnas.1702435114 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Khan M, Harms JS, Marim FM, Armon L, Hall CL, Liu YP, Banai M, Oliveira SC, Splitter GA, Smith JA (2016) The bacterial second messenger cyclic di-GMP regulates Brucella pathogenesis and leads to altered host immune response. Infect Immun 84(12):3458–3470.  https://doi.org/10.1128/IAI.00531-16 CrossRefGoogle Scholar
  15. 15.
    Song F, Wang H, Sauer K, Ren D (2018) Cyclic-di-GMP and oprF are involved in the response of Pseudomonas aeruginosa to substrate material stiffness during attachment on polydimethylsiloxane (PDMS). Front Microbiol 9:110.  https://doi.org/10.3389/fmicb.2018.00110 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273(52):34970–34975CrossRefGoogle Scholar
  17. 17.
    Kourtis N, Tavernarakis N (2017) Protein synthesis rate assessment by fluorescence recovery after photobleaching (FRAP). Bio Protoc 7(5):e2156.  https://doi.org/10.21769/BioProtoc.2156 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kellenberger CA, Wilson SC, Sales-Lee J, Hammond MC (2013) RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc 135(13):4906–4909.  https://doi.org/10.1021/ja311960g CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335(6073):1194.  https://doi.org/10.1126/science.1218298 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Han KY, Leslie BJ, Fei J, Zhang J, Ha T (2013) Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J Am Chem Soc 135(50):19033–19038.  https://doi.org/10.1021/ja411060p CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang XC, Wilson SC, Hammond MC (2016) Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Res 44(17):e139.  https://doi.org/10.1093/nar/gkw580 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kellenberger CA, Chen C, Whiteley AT, Portnoy DA, Hammond MC (2015) RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. J Am Chem Soc 137(20):6432–6435.  https://doi.org/10.1021/jacs.5b00275 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI (2010) Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328(5983):1295–1297.  https://doi.org/10.1126/science.1188658 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ho CL, Chong KS, Oppong JA, Chuah ML, Tan SM, Liang ZX (2013) Visualizing the perturbation of cellular cyclic di-GMP levels in bacterial cells. J Am Chem Soc 135(2):566–569.  https://doi.org/10.1021/ja310497x CrossRefPubMedGoogle Scholar
  25. 25.
    Bajar BT, Wang ES, Zhang S, Lin MZ, Chu J (2016) A guide to fluorescent protein FRET pairs. Sensors (Basel) 16(9):1488.  https://doi.org/10.3390/s16091488 CrossRefGoogle Scholar
  26. 26.
    Christen M, Kamischke C, Kulasekara HD, Olivas KC, Kulasekara BR, Christen B, Kline T, Miller SI (2018) Identification of small molecule modulators of diguanylate cyclase by FRET-based high-throughput-screening. ChemBioChem 20(3):394–407.  https://doi.org/10.1002/cbic.201800593 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yeo J, Dippel AB, Wang XC, Hammond MC (2018) In vivo biochemistry: single-cell dynamics of cyclic Di-GMP in Escherichia coli in response to zinc overload. Biochemistry 57(1):108–116.  https://doi.org/10.1021/acs.biochem.7b00696 CrossRefPubMedGoogle Scholar
  28. 28.
    Mills E, Petersen E, Kulasekara BR, Miller SI (2015) A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic L-arginine-sensing pathway. Sci Signal 8(380):ra57.  https://doi.org/10.1126/scisignal.aaa1796 CrossRefPubMedGoogle Scholar
  29. 29.
    Peterson R, Mills E, Miller SI (2019) Cyclic-di-GMP regulation promotes survival of a slow replicating subpopulation of intracellular Salmonella Typhimurium. Proc Natl Acad Sci USA 116:6335–6440CrossRefGoogle Scholar
  30. 30.
    Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18(6):715–727.  https://doi.org/10.1101/gad.289504 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shapiro L (1985) Generation of polarity during Caulobacter cell differentiation. Annu Rev Cell Biol 1:173–207.  https://doi.org/10.1146/annurev.cb.01.110185.001133 CrossRefGoogle Scholar
  32. 32.
    Hallez R, Delaby M, Sanselicio S, Viollier PH (2017) Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat Rev Microbiol 15(3):137–148.  https://doi.org/10.1038/nrmicro.2016.183 CrossRefPubMedGoogle Scholar
  33. 33.
    Levi A, Jenal U (2006) Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development. J Bacteriol 188(14):5315–5318.  https://doi.org/10.1128/JB.01725-05 CrossRefGoogle Scholar
  34. 34.
    Hecht GB, Lane T, Ohta N, Sommer JM, Newton A (1995) An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. EMBO J 14(16):3915–3924CrossRefGoogle Scholar
  35. 35.
    Paul R, Jaeger T, Abel S, Wiederkehr I, Folcher M, Biondi EG, Laub MT, Jenal U (2008) Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell 133(3):452–461.  https://doi.org/10.1016/j.cell.2008.02.045 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Aldridge P, Paul R, Goymer P, Rainey P, Jenal U (2003) Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 47(6):1695–1708CrossRefGoogle Scholar
  37. 37.
    Abel S, Chien P, Wassmann P, Schirmer T, Kaever V, Laub MT, Baker TA, Jenal U (2011) Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Mol Cell 43(4):550–560.  https://doi.org/10.1016/j.molcel.2011.07.018 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ozaki S, Schalch-Moser A, Zumthor L, Manfredi P, Ebbensgaard A, Schirmer T, Jenal U (2014) Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control. Mol Microbiol 94(3):580–594.  https://doi.org/10.1111/mmi.12777 CrossRefGoogle Scholar
  39. 39.
    Huitema E, Pritchard S, Matteson D, Radhakrishnan SK, Viollier PH (2006) Bacterial birth scar proteins mark future flagellum assembly site. Cell 124(5):1025–1037.  https://doi.org/10.1016/j.cell.2006.01.019 CrossRefPubMedGoogle Scholar
  40. 40.
    Christen M, Christen B, Allan MG, Folcher M, Jeno P, Grzesiek S, Jenal U (2007) DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad Sci U S A 104(10):4112–4117.  https://doi.org/10.1073/pnas.0607738104 CrossRefGoogle Scholar
  41. 41.
    Pini F, De Nisco NJ, Ferri L, Penterman J, Fioravanti A, Brilli M, Mengoni A, Bazzicalupo M, Viollier PH, Walker GC, Biondi EG (2015) Cell cycle control by the master regulator CtrA in Sinorhizobium meliloti. PLoS Genet 11 (5):e1005232.  https://doi.org/10.1371/journal.pgen.1005232 CrossRefGoogle Scholar
  42. 42.
    Hallez R, Mignolet J, Van Mullem V, Wery M, Vandenhaute J, Letesson JJ, Jacobs-Wagner C, De Bolle X (2007) The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus. EMBO J 26 (5):1444–1455.  https://doi.org/10.1038/sj.emboj.7601577 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Petersen E, Chaudhuri P, Gourley C, Harms J, Splitter G (2011) Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes. J Bacteriol 193(20):5683–5691.  https://doi.org/10.1128/JB.00428-11 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lai TH, Kumagai Y, Hyodo M, Hayakawa Y, Rikihisa Y (2009) The anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic Di-GMP in host cell infection. J Bacteriol 191(3):693–700.  https://doi.org/10.1128/JB.01218-08 CrossRefPubMedGoogle Scholar
  45. 45.
    Suzuki T, Iino T (1980) Isolation and characterization of multiflagellate mutants of Pseudomonas aeruginosa. J Bacteriol 143(3):1471–1479CrossRefGoogle Scholar
  46. 46.
    Kulasekara BR, Kamischke C, Kulasekara HD, Christen M, Wiggins PA, Miller SI (2013) c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. eLife 2:e01402.  https://doi.org/10.7554/eLife.01402 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Guvener ZT, Tifrea DF, Harwood CS (2006) Two different Pseudomonas aeruginosa chemosensory signal transduction complexes localize to cell poles and form and remould in stationary phase. Mol Microbiol 61(1):106–118.  https://doi.org/10.1111/j.1365-2958.2006.05218.x CrossRefPubMedGoogle Scholar
  48. 48.
    Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36(4):893–916.  https://doi.org/10.1111/j.1574-6976.2011.00322.x CrossRefGoogle Scholar
  49. 49.
    Partridge JD, Harshey RM (2013) More than motility: Salmonella flagella contribute to overriding friction and facilitating colony hydration during swarming. J Bacteriol 195(5):919–929.  https://doi.org/10.1128/JB.02064-12 CrossRefGoogle Scholar
  50. 50.
    Mayola A, Irazoki O, Martinez IA, Petrov D, Menolascina F, Stocker R, Reyes-Darias JA, Krell T, Barbe J, Campoy S (2014) RecA protein plays a role in the chemotactic response and chemoreceptor clustering of Salmonella enterica. PLoS One 9(8):e105578.  https://doi.org/10.1371/journal.pone.0105578 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259(5102):1717–1723CrossRefGoogle Scholar
  52. 52.
    Skotnicka D, Petters T, Heering J, Hoppert M, Kaever V, Sogaard-Andersen L (2016) Cyclic Di-GMP regulates type IV pilus-dependent motility in Myxococcus xanthus. J Bacteriol 198(1):77–90.  https://doi.org/10.1128/JB.00281-15 CrossRefPubMedGoogle Scholar
  53. 53.
    Bulyha I, Schmidt C, Lenz P, Jakovljevic V, Hone A, Maier B, Hoppert M, Sogaard-Andersen L (2009) Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 74(3):691–706.  https://doi.org/10.1111/j.1365-2958.2009.06891.x CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Le Quere B, Ghigo JM (2009) BcsQ is an essential component of the Escherichia coli cellulose biosynthesis apparatus that localizes at the bacterial cell pole. Mol Microbiol 72(3):724–740.  https://doi.org/10.1111/j.1365-2958.2009.06678.x CrossRefPubMedGoogle Scholar
  55. 55.
    Serra DO, Richter AM, Hengge R (2013) Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J Bacteriol 195(24):5540–5554.  https://doi.org/10.1128/JB.00946-13 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kuwada NJ, Traxler B, Wiggins PA (2015) Genome-scale quantitative characterization of bacterial protein localization dynamics throughout the cell cycle. Mol Microbiol 95(1):64–79.  https://doi.org/10.1111/mmi.12841 CrossRefPubMedGoogle Scholar
  57. 57.
    Casadesus J, Low D (2006) Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70(3):830–856.  https://doi.org/10.1128/MMBR.00016-06 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Million-Weaver S, Camps M (2014) Mechanisms of plasmid segregation: have multicopy plasmids been overlooked? Plasmid 75:27–36.  https://doi.org/10.1016/j.plasmid.2014.07.002 CrossRefPubMedGoogle Scholar
  59. 59.
    Helaine S, Thompson JA, Watson KG, Liu M, Boyle C, Holden DW (2010) Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A 107(8):3746–3751.  https://doi.org/10.1073/pnas.1000041107 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Medicine, Microbiology and Genome SciencesUniversity of WashingtonSeattleUSA
  2. 2.Department of MicrobiologyUniversity of WashingtonSeattleUSA
  3. 3.Department of Health SciencesEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations