Advertisement

Diagnosis and Differential Diagnosis of Food Allergy

  • Efren Rael
  • Vanitha Sampath
  • Kari Christine NadeauEmail author
Chapter
  • 55 Downloads

Abstract

Food allergies vary in allergen type, severity, and underlying etiology, making diagnosis challenging. Cross-reactivity between allergens, the presence of multiple food allergies, and food intolerances that often mimic food allergy add additional complexity to the diagnosis. Food intolerances include enzyme and metabolic deficiencies, functional defects, pharmacologic effects, psychosomatic effects, sensitivity to food additives, or reactions to naturally occurring chemicals or toxins in foods. Correct identification of food allergy and causative allergen(s) is important in order to prevent unnecessary dietary restrictions or future allergic reactions. There is currently no single universal method that adequately meets the safety, sensitivity, and specificity required to diagnose a food allergy. The diagnosis of food allergy is primarily based on a combination of clinical history, presence of IgE antibodies, elimination diets, and food challenges. The presence of IgE can be determined by skin prick tests or serum tests, both of which have high sensitivities but low specificities and are associated with a high number of false positives. Currently, the double-blind placebo-controlled food challenge still remains the gold standard for diagnosing an IgE-mediated food allergy, but is resource consuming and carries with it the risk of severe reaction during the challenge.

Keywords

Food allergy Diagnosis Skin prick test Oral food challenge IgE Allergen Basophil activation test Component-resolved diagnostics Anaphylaxis 

References

  1. 1.
    Nowak-Wegrzyn A, Sampson HA. Adverse reactions to foods. Med Clin North Am. 2006;90(1):97–127.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Boyce JA, Assa’ad A, Burks AW, Jones SM, Sampson HA, Wood RA, et al. Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol. 2010;126(6 0):S1.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bierme P, Nowak-Wegrzyn A, Caubet JC. Non-IgE-mediated gastrointestinal food allergies. Curr Opin Pediatr. 2017;29(6):697–703.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gupta RS, Warren CM, Smith BM, Blumenstock JA, Jiang J, Davis MM, et al. The public health impact of parent-reported childhood food allergies in the United States. Pediatrics. 2018;142(6):e20181235.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jackson KD, Howie LD, Akinbami LJ. Trends in allergic conditions among children: United States, 1997-2011. NCHS Data Brief. 2013;(121):1–8. PubMed PMID: 23742874Google Scholar
  6. 6.
    Nwaru BI, Hickstein L, Panesar SS, Roberts G, Muraro A, Sheikh A. Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy. 2014;69(8):992–1007.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Osborne NJ, Koplin JJ, Martin PE, Gurrin LC, Lowe AJ, Matheson MC, et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J Allergy Clin Immunol. 2011;127(3):668–76.e1–2.CrossRefGoogle Scholar
  8. 8.
    Peters RL, Koplin JJ, Gurrin LC, Dharmage SC, Wake M, Ponsonby AL, et al. The prevalence of food allergy and other allergic diseases in early childhood in a population-based study: HealthNuts age 4-year follow-up. J Allergy Clin Immunol. 2017;140(1):145–53 e8.PubMedCrossRefGoogle Scholar
  9. 9.
    Rinaldi M, Harnack L, Oberg C, Schreiner P, St Sauver J, Travis LL. Peanut allergy diagnoses among children residing in Olmsted County, Minnesota. J Allergy Clin Immunol. 2012;130(4):945–50.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sicherer SH, Munoz-Furlong A, Godbold JH, Sampson HA. US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol. 2010;125(6):1322–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Soller L, Ben-Shoshan M, Harrington DW, Fragapane J, Joseph L, St Pierre Y, et al. Overall prevalence of self-reported food allergy in Canada. J Allergy Clin Immunol. 2012;130(4):986–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Zopf Y, Baenkler HW, Silbermann A, Hahn EG, Raithel M. The differential diagnosis of food intolerance. Dtsch Arztebl Int. 2009;106(21):359–69; quiz 69–70; 4 p following 70.Google Scholar
  13. 13.
    Leung J, Crowe SE. Food allergy and food intolerance. World Rev Nutr Diet. 2015;111:76–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Turnbull JL, Adams HN, Gorard DA. Review article: the diagnosis and management of food allergy and food intolerances. Aliment Pharmacol Ther. 2015;41(1):3–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Wilson BG, Bahna SL. Adverse reactions to food additives. Ann Allergy Asthma Immunol. 2005;95(6):499–507; quiz, 70.CrossRefGoogle Scholar
  16. 16.
    Miwa N, Kawamura A, Masuda T, Akiyama M. An outbreak of food poisoning due to egg yolk reaction-negative Staphylococcus aureus. Int J Food Microbiol. 2001;64(3):361–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Alshannaq A, Occurrence YJH. Toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health. 2017;14(6):pii: E632.CrossRefGoogle Scholar
  18. 18.
    Coleman RM, Ojeda-Torres G, Bragg W, Fearey D, McKinney P, Castrodale L, et al. Saxitoxin exposure confirmed by human urine and food analysis. J Anal Toxicol. 2018 May 25;42:e61.  https://doi.org/10.1093/jat/bky031; [Epub ahead of print].PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Pennotti R, Scallan E, Backer L, Thomas J, Angulo FJ. Ciguatera and scombroid fish poisoning in the United States. Foodborne Pathog Dis. 2013;10(12):1059–66.PubMedCrossRefGoogle Scholar
  20. 20.
    David TJ. Adverse reactions and intolerance to foods. Br Med Bull. 2000;56(1):34–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Skypala IJ, Williams M, Reeves L, Meyer R, Venter C. Sensitivity to food additives, vaso-active amines and salicylates: a review of the evidence. Clin Translat Allergy. 2015;5:34.CrossRefGoogle Scholar
  22. 22.
    Yu W, Freeland DMH, Nadeau KC. Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol. 2016;16(12):751–65.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lee J, Garrett JP, Brown-Whitehorn T, Spergel JM. Biphasic reactions in children undergoing oral food challenges. Allergy Asthma Proc. 2013;34(3):220–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Pravettoni V, Incorvaia C. Diagnosis of exercise-induced anaphylaxis: current insights. J Asthma Allergy. 2016;9:191–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Feldweg AM. Exercise-induced anaphylaxis. Immunol Allergy Clin N Am. 2015;35(2):261–75.CrossRefGoogle Scholar
  26. 26.
    Simons FE, Ardusso LR, Bilo MB, Cardona V, Ebisawa M, El-Gamal YM, et al. International consensus on (ICON) anaphylaxis. World Allergy Organ J. 2014;7(1):9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lieberman P, Nicklas RA, Oppenheimer J, Kemp SF, Lang DM, Bernstein DI, et al. The diagnosis and management of anaphylaxis practice parameter: 2010 update. J Allergy Clin Immunol. 2010;126(3):477–80 e1–42.CrossRefGoogle Scholar
  28. 28.
    Simons FE, Ardusso LR, Bilo MB, El-Gamal YM, Ledford DK, Ring J, et al. World Allergy Organization anaphylaxis guidelines: summary. J Allergy Clin Immunol. 2011;127(3):587–93 e1–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Sicherer SH. Clinical implications of cross-reactive food allergens. J Allergy Clin Immunol. 2001;108(6):881–90.CrossRefGoogle Scholar
  30. 30.
    Price A, Ramachandran S, Smith GP, Stevenson ML, Pomeranz MK, Cohen DE. Oral allergy syndrome (pollen-food allergy syndrome). Dermatitis. 2015;26(2):78–88.CrossRefGoogle Scholar
  31. 31.
    Popescu FD. Cross-reactivity between aeroallergens and food allergens. World J Methodol. 2015;5(2):31–50.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Katelaris CH. Food allergy and oral allergy or pollen-food syndrome. Curr Opin Allergy Clin Immunol. 2010;10(3):246–51.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wilson JM, Schuyler AJ, Schroeder N, Platts-Mills TA. Galactose-alpha-1,3-galactose: atypical food allergen or model IgE hypersensitivity? Curr Allergy Asthma Rep. 2017;17(1):8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Flaherty MG, Kaplan SJ, Jerath MR. Diagnosis of life-threatening alpha-gal food allergy appears to be patient driven. J Prim Care Community Health. 2017;8(4):345–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sicherer SH, Sampson HA. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141(1):41–58.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Heinzerling L, Mari A, Bergmann KC, Bresciani M, Burbach G, Darsow U, et al. The skin prick test – European standards. Clin Translat Allergy. 2013;3(1):3.CrossRefGoogle Scholar
  37. 37.
    Sampson HA, Aceves S, Bock SA, James J, Jones S, Lang D, et al. Food allergy: a practice parameter update-2014. J Allergy Clin Immunol. 2014;134(5):1016–25 e43.CrossRefGoogle Scholar
  38. 38.
    Peters RL, Allen KJ, Dharmage SC, Tang ML, Koplin JJ, Ponsonby AL, et al. Skin prick test responses and allergen-specific IgE levels as predictors of peanut, egg, and sesame allergy in infants. J Allergy Clin Immunol. 2013;132(4):874–80.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Nacaroglu HT, Erdem SB, Karaman S, Dogan D, CS UK, E TK, et al. Diagnostic values for egg white specific IgE levels with the skin prick test in Turkish children with egg white allergy. Allergol Immunopathol (Madr). 2017;45(5):445–51.CrossRefGoogle Scholar
  40. 40.
    Sporik R, Hill DJ, Hosking CS. Specificity of allergen skin testing in predicting positive open food challenges to milk, egg and peanut in children. Clin Exp Allergy. 2000;30(11):1540–6.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hill DJ, Heine RG, Hosking CS. The diagnostic value of skin prick testing in children with food allergy. Pediatr Allergy Immunol. 2004;15(5):435–41.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Verstege A, Mehl A, Rolinck-Werninghaus C, Staden U, Nocon M, Beyer K, et al. The predictive value of the skin prick test weal size for the outcome of oral food challenges. Clin Exp Allergy. 2005;35(9):1220–6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Calvani M, Alessandri C, Frediani T, Lucarelli S, Miceli Sopo S, Panetta V, et al. Correlation between skin prick test using commercial extract of cow’s milk protein and fresh milk and food challenges. Pediatr Allergy Immunol. 2007;18(7):583–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Rance F, Abbal M, Lauwers-Cances V. Improved screening for peanut allergy by the combined use of skin prick tests and specific IgE assays. J Allergy Clin Immunol. 2002;109(6):1027–33.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Gupta RS, Lau CH, Hamilton RG, Donnell A, Newhall KK. Predicting outcomes of oral food challenges by using the allergen-specific IgE-total IgE ratio. J Allergy Clin Immunol Pract. 2014;2(3):300–5.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Mehl A, Verstege A, Staden U, Kulig M, Nocon M, Beyer K, et al. Utility of the ratio of food-specific IgE/total IgE in predicting symptomatic food allergy in children. Allergy. 2005;60(8):1034–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Federly TJ, Jones BL, Dai H, Dinakar C. Interpretation of food specific immunoglobulin E levels in the context of total IgE. Ann Allergy Asthma Immunol. 2013;111(1):20–4.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Goikoetxea MJ, Sanz ML, Garcia BE, Mayorga C, Longo N, Gamboa PM, et al. Recommendations for the use of in vitro methods to detect specific immunoglobulin E: are they comparable? J Investig Allergol Clin Immunol. 2013;23(7):448–54; quiz 2 p preceding 55.Google Scholar
  49. 49.
    Sampson HA. Utility of food-specific IgE concentrations in predicting symptomatic food allergy. J Allergy Clin Immunol. 2001;107(5):891–6.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sato S, Yanagida N, Ebisawa M. How to diagnose food allergy. Curr Opin Allergy Clin Immunol. 2018;18(3):214–21.PubMedCrossRefGoogle Scholar
  51. 51.
    Park KH, Lee J, Sim DW, Lee SC. Comparison of Singleplex specific IgE detection immunoassays: ImmunoCAP Phadia 250 and Immulite 2000 3gAllergy. Ann Lab Med. 2018;38(1):23–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Celik-Bilgili S, Mehl A, Verstege A, Staden U, Nocon M, Beyer K, et al. The predictive value of specific immunoglobulin E levels in serum for the outcome of oral food challenges. Clin Exp Allergy. 2005;35(3):268–73.PubMedCrossRefGoogle Scholar
  53. 53.
    Sato S, Ogura K, Takahashi K, Sato Y, Yanagida N, Ebisawa M. Usefulness of antigen-specific IgE probability curves derived from the 3gAllergy assay in diagnosing egg, cow’s milk, and wheat allergies. Allergol Int. 2017;66(2):296–301.PubMedCrossRefGoogle Scholar
  54. 54.
    Maloney JM, Rudengren M, Ahlstedt S, Bock SA, Sampson HA. The use of serum-specific IgE measurements for the diagnosis of peanut, tree nut, and seed allergy. J Allergy Clin Immunol. 2008;122(1):145–51.PubMedCrossRefGoogle Scholar
  55. 55.
    Van Gasse AL, Mangodt EA, Faber M, Sabato V, Bridts CH, Ebo DG. Molecular allergy diagnosis: status anno 2015. Clin Chim Acta. 2015;444:54–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Masilamani M, Commins S, Shreffler W. Determinants of food allergy. Immunol Allergy Clin N Am. 2012;32(1):11–33.CrossRefGoogle Scholar
  57. 57.
    Kukkonen AK, Pelkonen AS, Makinen-Kiljunen S, Voutilainen H, Makela MJ. Ara h 2 and Ara 6 are the best predictors of severe peanut allergy: a double-blind placebo-controlled study. Allergy. 2015;70(10):1239–45.PubMedCrossRefGoogle Scholar
  58. 58.
    Asarnoj A, Nilsson C, Lidholm J, Glaumann S, Ostblom E, Hedlin G, et al. Peanut component Ara h 8 sensitization and tolerance to peanut. J Allergy Clin Immunol. 2012;130(2):468–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Grimshaw KE, Bryant T, Oliver EM, Martin J, Maskell J, Kemp T, et al. Incidence and risk factors for food hypersensitivity in UK infants: results from a birth cohort study. Clin Translat Allergy. 2015;6(1):1.CrossRefGoogle Scholar
  60. 60.
    Eller E, Mortz CG, Bindslev-Jensen C. Cor a 14 is the superior serological marker for hazelnut allergy in children, independent of concomitant peanut allergy. Allergy. 2016;71(4):556–62.PubMedCrossRefGoogle Scholar
  61. 61.
    Datema MR, van Ree R, Asero R, Barreales L, Belohlavkova S, de Blay F, et al. Component-resolved diagnosis and beyond: multivariable regression models to predict severity of hazelnut allergy. Allergy. 2018;73(3):549–59.PubMedCrossRefGoogle Scholar
  62. 62.
    Bartnikas LM, Sheehan WJ, Tuttle KL, Petty CR, Schneider LC, Phipatanakul W. Ovomucoid specific immunoglobulin E as a predictor of tolerance to cooked egg. Allergy Rhinol (Providence). 2015;6(3):198–204.CrossRefGoogle Scholar
  63. 63.
    Kennard L, Thomas I, Rutkowski K, Azzu V, Yong PFK, Kasternow B, et al. A multicenter evaluation of diagnosis and management of omega-5 gliadin allergy (also known as wheat-dependent exercise-induced anaphylaxis) in 132 adults. J Allergy Clin Immunol Pract. 2018 Mar 1. pii: S2213–2198(18)30105–3.  https://doi.org/10.1016/j.jaip.2018.02.013. [Epub ahead of print].PubMedCrossRefGoogle Scholar
  64. 64.
    Dubiela P, Kabasser S, Smargiasso N, Geiselhart S, Bublin M, Hafner C, et al. Jug r 6 is the allergenic vicilin present in walnut responsible for IgE cross-reactivities to other tree nuts and seeds. Sci Rep. 2018;8(1):11366.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Berneder M, Bublin M, Hoffmann-Sommergruber K, Hawranek T, Lang R. Allergen chip diagnosis for soy-allergic patients: Gly m 4 as a marker for severe food-allergic reactions to soy. Int Arch Allergy Immunol. 2013;161(3):229–33.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Fischer J, Biedermann T. Delayed immediate-type hypersensitivity to red meat and innards: current insights into a novel disease entity. J Dtsch Dermatol Ges. 2016;14(1):38–44.PubMedGoogle Scholar
  67. 67.
    Agabriel C, Ghazouani O, Birnbaum J, Liabeuf V, Porri F, Gouitaa M, et al. Ara h 2 and Ara h 6 sensitization predicts peanut allergy in Mediterranean pediatric patients. Pediatr Allergy Immunol. 2014;25(7):662–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Lin J, Sampson HA. IgE epitope mapping using peptide microarray immunoassay. Methods Mol Biol. 2017;1592:177–87.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang J, Lin J, Bardina L, Goldis M, Nowak-Wegrzyn A, Shreffler WG, et al. Correlation of IgE/IgG4 milk epitopes and affinity of milk-specific IgE antibodies with different phenotypes of clinical milk allergy. J Allergy Clin Immunol. 2010;125(3):695–702, e1-e6.CrossRefGoogle Scholar
  70. 70.
    Santos AF, Shreffler WG. Road map for the clinical application of the basophil activation test in food allergy. Clin Exp Allergy. 2017;47(9):1115–24.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Santos AF, Douiri A, Becares N, Wu SY, Stephens A, Radulovic S, et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. J Allergy Clin Immunol. 2014;134(3):645–52.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Santos AF, Du Toit G, Douiri A, Radulovic S, Stephens A, Turcanu V, et al. Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. J Allergy Clin Immunol. 2015;135(1):179–86.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Vila L, Moreno A, Gamboa PM, Martinez-Aranguren R, Sanz ML. Decrease in antigen-specific CD63 basophil expression is associated with the development of tolerance to egg by SOTI in children. Pediatr Allergy Immunol. 2013;24(5):463–8.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Ballmer-Weber BK, Beyer K. Food challenges. J Allergy Clin Immunol. 2018;141(1):69–71 e2.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Nowak-Wegrzyn A, Assa’ad AH, Bahna SL, Bock SA, Sicherer SH, Teuber SS, et al. Work group report: oral food challenge testing. J Allergy Clin Immunol. 2009;123(6 Suppl):S365–83.CrossRefGoogle Scholar
  76. 76.
    Leonard SA. Non-IgE-mediated adverse food reactions. Curr Allergy Asthma Rep. 2017;17(12):84.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Nowak-Wegrzyn A, Katz Y, Mehr SS, Koletzko S. Non-IgE-mediated gastrointestinal food allergy. J Allergy Clin Immunol. 2015;135(5):1114–24.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nowak-Wegrzyn A, Chehade M, Groetch ME, Spergel JM, Wood RA, Allen K, et al. International consensus guidelines for the diagnosis and management of food protein-induced enterocolitis syndrome: Executive summary-Workgroup Report of the Adverse Reactions to Foods Committee, American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2017;139(4):1111–26 e4.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Leonard SA, Pecora V, Fiocchi AG, Nowak-Wegrzyn A. Food protein-induced enterocolitis syndrome: a review of the new guidelines. World Allergy Organ J. 2018;11(1):4.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Elizur A, Cohen M, Goldberg MR, Rajuan N, Cohen A, Leshno M, et al. Cow’s milk associated rectal bleeding: a population based prospective study. Pediatr Allergy Immunol. 2012;23(8):766–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Lake AM. Food-induced eosinophilic proctocolitis. J Pediatr Gastroenterol Nutr. 2000;30(Suppl):S58–60.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Feuille E, Nowak-Wegrzyn A. Food protein-induced enterocolitis syndrome, allergic Proctocolitis, and Enteropathy. Curr Allergy Asthma Rep. 2015;15(8):50.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Walker-Smith JA. Cow milk-sensitive enteropathy: predisposing factors and treatment. J Pediatr. 1992;121(5 Pt 2):S111–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Iyngkaran N, Robinson MJ, Prathap K, Sumithran E, Yadav M. Cows’ milk protein-sensitive enteropathy. Combined clinical and histological criteria for diagnosis. Arch Dis Child. 1978;53(1):20–6.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kovalszki A, Weller PF. Eosinophilia. Prim Care. 2016;43(4):607–17.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lucendo AJ, Molina-Infante J, Arias A, von Arnim U, Bredenoord AJ, Bussmann C, et al. Guidelines on eosinophilic esophagitis: evidence-based statements and recommendations for diagnosis and management in children and adults. United European Gastroenterol J. 2017;5(3):335–58.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Schoepfer A, Blanchard C, Dawson H, Lucendo A, Mauro A, Ribi C, et al. Eosinophilic esophagitis: latest insights from diagnosis to therapy. Ann N Y Acad Sci. 2018 May 15.  https://doi.org/10.1111/nyas.13731; [Epub ahead of print].PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Liacouras CA, Furuta GT, Hirano I, Atkins D, Attwood SE, Bonis PA, et al. Eosinophilic esophagitis: updated consensus recommendations for children and adults. J Allergy Clin Immunol. 2011;128(1):3–20 e6; quiz 1–2.Google Scholar
  89. 89.
    Kavitt RT, Hirano I, Vaezi MF. Diagnosis and treatment of eosinophilic esophagitis in adults. Am J Med. 2016;129(9):924–34.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sugnanam KK, Collins JT, Smith PK, Connor F, Lewindon P, Cleghorn G, et al. Dichotomy of food and inhalant allergen sensitization in eosinophilic esophagitis. Allergy. 2007;62(11):1257–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Lucendo AJ, Arias A, Gonzalez-Cervera J, Yague-Compadre JL, Guagnozzi D, Angueira T, et al. Empiric 6-food elimination diet induced and maintained prolonged remission in patients with adult eosinophilic esophagitis: a prospective study on the food cause of the disease. J Allergy Clin Immunol. 2013;131(3):797–804.PubMedCrossRefGoogle Scholar
  92. 92.
    Molina-Infante J, Arias A, Alcedo J, Garcia-Romero R, Casabona-Frances S, Prieto-Garcia A, et al. Step-up empiric elimination diet for pediatric and adult eosinophilic esophagitis: the 2-4-6 study. J Allergy Clin Immunol. 2018;141(4):1365–72.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    DunnGalvin A, Daly D, Cullinane C, Stenke E, Keeton D, Erlewyn-Lajeunesse M, et al. Highly accurate prediction of food challenge outcome using routinely available clinical data. J Allergy Clin Immunol. 2011;127(3):633–9 e1–3.PubMedCrossRefGoogle Scholar
  94. 94.
    Chinthrajah RS, Purington N, Andorf S, Rosa JS, Mukai K, Hamilton R, et al. Development of a tool predicting severity of allergic reaction during peanut challenge. Ann Allergy Asthma Immunol. 2018;121(1):69–76 e2.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Efren Rael
    • 1
  • Vanitha Sampath
    • 1
  • Kari Christine Nadeau
    • 2
    Email author
  1. 1.Sean N. Parker Center for Allergy and Asthma Research at Stanford UniversityStanfordUSA
  2. 2.Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Department of Medicine and PediatricsStanfordUSA

Personalised recommendations